Skip to main content

Clusterfun - a plotting library to inspect data

Project description

example workflow

Clusterfun

Clusterfun is a python plotting library to explore image and audio data. Play around with a live demo on https://clusterfun.app.

Getting started

Clusterfun can be installed with pip:

pip install clusterfun

Clusterfun requires Python 3.8 or higher.

Plots accept data in the form of a pandas DataFrame, which will be installed automatically if not already present. No account, payment, or internet connection is required to use clusterfun. Clusterfun is open source and free to use.

A simple example

import pandas as pd
import clusterfun as clt

df = pd.read_csv("https://raw.githubusercontent.com/gietema/clusterfun-data/main/wiki-art.csv")
clt.scatter(df, x="x", y="y", media="img_path", color="painter")

Example plot Data can be hosted locally or on AWS S3.

As you can see, a clusterfun plot takes as input a pandas dataframe and column names indicating which columns to use for the visualisation. In this way, it is similar to the seaborn or the plotly library. But in clusterfun, you can:

  • Click and drag to select data to visualise it in a grid
  • Hover over data points to see them on the right side of the page
  • Click on data points to view zoomed in versions of the image related to the data point

This makes clusterfun ideal for quickly visualising image data, which can be useful in the context of building datasets, exploring edge cases and debugging model performance.

Main features

Default parameters

The default parameters for the plot types are as follows:

  • df: pd.DataFrame (required)

    The dataframe used for the data to plot. Most other parameters are column names in this dataframe (e.g. media, color, etc.).

  • media: str (required)

    The column name of the media to display in the plot. See data loading for more information about the type of media that can be displayed.

  • show: bool = True

    Whether to show the plot or not. If show is set to True, clusterfun will start a local server to display the plot in a web browser. More specifically, we start a FastAPI server where we mount the webpage as a static file. The application itself does not require an internet connection. All data is loaded locally and does not leave your machine/browser. If show is set to False, clusterfun only saves the required data to serve the plot later on and return the path to where the data is stored. If you want to serve the plot yourself later on, you can run clusterfun {path - to - data}|{uuid} in the command line to start a local server for the plot you are interested in.

  • color: Optional[str] = None

    If given, points will be colored based on the values in the given column. Powerful for visualising clusters or classes of data.

  • title: Optional[str] = None

    The title to use for the plot.

  • bounding_box: Optional[str] = None

    You can visualise bounding boxes on top of your images by with the bounding_box parameter. For this to work, you need to have a bounding box column in the dataframe used to plot the data. Each cell in the dataframe needs to contain a dictionary or a list of dictionaries with bounding box values: xmin, ymin, xmax, ymax, label (optional), color (optional). The keys of the expected dictionary are:

    • xmin: float | int
    • ymin: float | int
    • xmax: float | int
    • ymax: float | int
    • label: Optional[str] = None
    • color: Optional[str] = None

    If no color is provided, a default color scheme will be used. The color value can be a color name or hex value. The label will be displayed in the top left of the bounding box. Example:

    single_bounding_box = {
      "xmin": 12,
      "ymin": 10,
      "xmax": 100,
      "ymax": 110,
      "color": "green",
      "label": "ground truth"
    }
    

Plot types

The following plot types are available:

  • Bar chart
  • Confusion matrix
  • Grid
  • Histogram
  • Pie chart
  • Scatterplot
  • Violin plot

Bar chart

def bar_chart(
    df: pd.DataFrame,
    x: str,
    media: str,
    color: Optional[str] = None,
    ...
) -> Path:

Parameters

  • df: pd.DataFrame The dataframe with the data to plot
  • x: str The column name of the data for the bar chart. One bar per unique value will be plotted.
  • media: str The column name of the media to display
  • color: Optional[str] = None If added, the color will be used to create a stacked bar chart.

Example

import pandas as pd
import clusterfun as clt

df = pd.read_csv("https://raw.githubusercontent.com/gietema/clusterfun-data/main/wiki-art.csv")
clt.bar_chart(df, x="painter", media="img_path", color="style")

Example bar

Confusion matrix

def confusion_matrix(
    df: pd.DataFrame,
    y_true: str,
    y_pred: str,
    media: str,
    ...
) -> Path:

Parameters

  • df: pd.DataFrame

    The dataframe with the data to plot

  • y_true: str

    The ground truth label. Values can be integers or strings.

  • y_pred: str

    The column name of the predicted label. Values can be integers or strings.

  • media: str

    The column name of the media to display

Example

import pandas as pd
import clusterfun as clt

df = pd.read_csv("https://raw.githubusercontent.com/gietema/clusterfun-data/main/cifar10.csv")
clt.confusion_matrix(df, y_true="label", y_pred="pred", media="img_path")

Example confusion matrix

Grid

def grid(
    df: pd.DataFrame,
    media: str,
    ...
) -> Path:

Parameters

  • df: pd.DataFrame

    The dataframe with the data to plot

  • media: str

    The column name of the media to display

Example

import pandas as pd
import clusterfun as clt

df = pd.read_csv("https://raw.githubusercontent.com/gietema/clusterfun-data/main/wiki-art.csv")
clt.grid(df, media="img_path")

Example grid

Histogram

def histogram(
    df: pd.DataFrame,
    x: str,
    media: str,
    bins: int = 20,
    ...
) -> Path:

Parameters

  • df: pd.DataFrame

    The dataframe with the data to plot

  • x: str

    The column name of the data for the histogram

  • media: str

    The column name of the media to display

  • bins: int = 20

    The number of bins to use for the histogram

Example

import pandas as pd
import clusterfun as clt

df = pd.read_csv("https://raw.githubusercontent.com/gietema/clusterfun-data/main/wiki-art.csv")
clt.histogram(df, x="brightness", media="img_path")

Example histogram

Pie chart

def pie(
    df: pd.DataFrame,
    color: str,
) -> Path:

Parameters

  • df: pd.DataFrame

    The dataframe with the data to plot

  • color

    Column for the pies of the pie chart

Example

import pandas as pd
import clusterfun as clt

df = pd.read_csv("https://raw.githubusercontent.com/gietema/clusterfun-data/main/wiki-art.csv")
clt.pie_chart(df, color="painter", media="img_path")

Example pie

Scatterplot

    df: pd.DataFrame,
    x: str,
    y: str,
    ...
) -> Path:

Parameters

  • df: pd.DataFrame

    The dataframe with the data to plot

  • x: str

    The column name of the data for the x-axis

  • y: str

    The column name of the data for the y-axis

Example

import pandas as pd
import clusterfun as clt

df = pd.read_csv("https://raw.githubusercontent.com/gietema/clusterfun-data/main/wiki-art.csv")
clt.scatter(df, x="x", y="y", media="img_path")

Example scatter

Violin plot

def violin(
    df: pd.DataFrame,
    y: str,
    ...
) -> Path:

Parameters

  • df: pd.DataFrame

    The dataframe with the data to plot

  • y: str

    The column name of the data for the y-axis

Example

import pandas as pd
import clusterfun as clt

df = pd.read_csv("https://raw.githubusercontent.com/gietema/clusterfun-data/main/wiki-art.csv")
df = df[df.painter.isin(["Pablo Picasso", "Juan Gris", "Georges Braque", "Fernand Leger"])]
clt.violin(df, y="brightness", media="img_path")

Example violin

Data loading

Clusterfun supports AWS S3 and local data storage and loading. The dataframe column corresponding to the media value in the plot will be used to determine where to load the media from.

import clusterfun as clt

df = pd.read_csv("https://raw.githubusercontent.com/gietema/clusterfun-data/main/wiki-art.csv")
clt.grid(df, media="img_column")

AWS S3 media should start with s3://. Make sure to set a AWS_REGION environment variable to the region where your data is stored.

Support for Google Cloud Storage is coming soon.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clusterfun-0.6.1.tar.gz (3.2 MB view details)

Uploaded Source

Built Distribution

clusterfun-0.6.1-py3-none-any.whl (3.4 MB view details)

Uploaded Python 3

File details

Details for the file clusterfun-0.6.1.tar.gz.

File metadata

  • Download URL: clusterfun-0.6.1.tar.gz
  • Upload date:
  • Size: 3.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.6 Darwin/23.3.0

File hashes

Hashes for clusterfun-0.6.1.tar.gz
Algorithm Hash digest
SHA256 e27f30574304e1701245a29ec08095d47221260146b976e1dc1f6bc1c300b1c2
MD5 d5d72ff799ab6c539780b9d14b1b1aa0
BLAKE2b-256 2f5d7f80bb36d7d9f2a860b099592559c13ffcba7b8a73f74a88ca11630747f1

See more details on using hashes here.

File details

Details for the file clusterfun-0.6.1-py3-none-any.whl.

File metadata

  • Download URL: clusterfun-0.6.1-py3-none-any.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.6 Darwin/23.3.0

File hashes

Hashes for clusterfun-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fe5609754658d9ab60b1b8d7c603ac02da52622fba6b7add0f8ba0c8ddc17e35
MD5 7233abd70e87e1d828152fea016a58fe
BLAKE2b-256 597181e92d1e8b9adc487f068731dab45de135786256f608f2ea133fc3d7711a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page