A Framework for Benchmarking Clustering Algorithms
Project description
A Framework for Benchmarking Clustering Algorithms
Maintained/edited/authored by Marek Gagolewski.
This project aims to:
- aggregate, polish, and standardise the existing clustering benchmark batteries referred to across the machine learning and data mining literature,
- introduce new datasets of different dimensionalities, sizes, and cluster types,
- propose a consistent methodology for evaluating clustering algorithms.
See https://clustering-benchmarks.gagolewski.com/ for a detailed description.
How to cite: Gagolewski M., A framework for benchmarking clustering algorithms, SoftwareX 20, 2022, 101270, https://clustering-benchmarks.gagolewski.com, DOI: 10.1016/j.softx.2022.101270.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for clustering_benchmarks-1.1.5.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1732c262fb13be2f88814ef9a19c60108e91a7f6cfb9b960a42feaa299034ea3 |
|
MD5 | 8ae843a013aebb16001ee81df23be5d3 |
|
BLAKE2b-256 | 27fee78538f4cd7b1b28e9c625eabd21f314004d00644a8347d0b01473e72ffa |
Close
Hashes for clustering_benchmarks-1.1.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e50e5c6482797c2af1e79cad8c17a52fbec2d3f22f3638559d5798fb688d7998 |
|
MD5 | 18ef8bde7ea7ee1751b401278d76a117 |
|
BLAKE2b-256 | e0d392d6100cc446aadb56a434ceb5465695f7f0783b227b2a2b9a66d97d3bff |