Skip to main content

Clusterpolate: Inter- and extrapolation for clustered data.

Project description

Traditional approaches for inter- and extrapolation of scattered data work on a filled rectangular area surrounding the data points or in their filled convex hull. However, scattered data often consists of different clusters of irregular shapes and usually contains areas where there simply is no data. Forcing such data into a traditional inter- or extrapolation scheme often does not lead to the desired results.

Heatmaps, on the other hand, deal well with scattered data but often do not provide real interpolation: Instead they usually use raw sums of kernel functions which overestimate the target value in densely populated areas.

Clusterpolation is a hybrid inter- and extrapolation scheme to fix this. It uses kernel functions for a weighted inter- and extrapolation of local values, as well as for a density estimation of the data. The latter is used to assign a membership degree to clusterpolated points: Points with a low membership degree lie in an area where there’s just not enough data.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clusterpolate-0.2.0.tar.gz (21.3 kB view details)

Uploaded Source

File details

Details for the file clusterpolate-0.2.0.tar.gz.

File metadata

File hashes

Hashes for clusterpolate-0.2.0.tar.gz
Algorithm Hash digest
SHA256 85b8ccab4457a2b48a44a3d1d5e4f15a32a3fda4b3488db52f69da599d566ba1
MD5 7033243a58813adde36e2d53b04cbfcb
BLAKE2b-256 e2c3c51d60f98fc092fe1247c7df6acdba5abfb583cada51b765f7a6cb2c4ce2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page