Skip to main content

The Clusters-Features package allows data science users to compute high-level linear algebra operations on any type of data set.

Project description

Clusters-Features : a Python module to evaluate the quality of clustering


This package is made for unsupervised learning. All criterias are used with internal validation and make no use of ground-truth labels.

Official documentation : simonbertrand.pages.unistra.fr/Clusters-Features 

Table of contents

  1. Introduction
  2. Command Line Interface
  3. Data
  4. Score
  5. Confusion Hypersphere
  6. Info
  7. Density
  8. Utils
  9. Graphs

Introduction

Clusters-Features is a package that computes many operations using only the dataset and the target vector.

Data
The package provides all the usefull data such as pairwise distances or distances between every elements and the centroid of given cluster. You can also check for the maximum/minimum distances between two elements of different clusters or even each intercentroid distances. But you can also get different radius for each centroids and analyse them to firstly understand the shape of the clusters. The distribution of all radius for each cluster is also available. All informative data is contained inside the subclass Data.

Score
Approximatively 40 different internal indices have been implemented in Python : Ball-Hall Index, Dunn Index, Generalized Dunn Indexes (18 indexes), C Index, Banfeld-Raftery Index, Davies-Bouldin Index, Calinski-Harabasz Index, Ray-Turi Index, Xie-Beni Index, Ratkowsky Lance Index, SD Index, Mclain Rao Index, Scott-Symons Index, PBM Index, Point biserial Index, Det Ratio Index, Log SumSquare Ratio Index, Wemmert-Gançarski Index. We use two systems to generate these index, the first is caching each computed index and the other directly compute them. All these score are defined in the main reference, check for the Score section to find the reference.

Confusion Hypersphere
Clusters-Features also provides a deep analysis of the multidimensionnal space. Confusion Hypersphere consists of counting the number of element contained in several hyperspheres centered on different positions and with different radius. This feature allows users to understand which clusters are confused (in the sense of the Euclidean norm) with other clusters. These indicators make it possible to determine which clusters are the most separated from the others and this is clearly adapted to convex clusters since the hypersphere is convex.

Info
Info gives two kind of boards such as clusters board which gives you information for each clusters. The general board gives informations at a general scale of the dataset .

Density
This section uses a meshgrid to estimate a density by summing n-dim (for n=2 or n=3) Gaussian distrubution centred on each dataset points. We put the minimum contour as a given percentile of the current density. If percentile is 99% then only 1% of the highest density values will be retained. We can make it for 2D grid or 3D grid but it is quickly limited due to the large number of combinations needed to generate an n-dim grid.

Utils
Implement external packages and utils to the current dataset.

Graph (Falcutative)
Graph allows users to plot few kind of data generated by Clusters-Features. As Plotly is used to plot, this section is facultative in the case where user only need to get the different data and matrix to plot with their own module. In order to disable this section, you will have to go to settings.py and put to False the variable "Activated_Graph" and then re-build the package using setuptools. All requirements.txt are going to be generated in consequences of these settings.

Dependencies

Native dependencies :

Falcultative dependencies (may cause errors if the user forces the use of the method of these falcultative dependencies without having installed the correct libraries) :

Graph is dependent of Utils to correctly work but the reciprocal is not true.

Command Line Interface

This package provides a command line interface that is available by running this command

python3 ./clustersfeatures-cli.py -h

The documentation for the CLI is contained inside the script. Just use --help arguments to understand what it does.

Import the module

from ClustersFeatures import *

Load a random data set

We choose here the scikit-learn digits data set because it is in high dimension (64) and has a large number of observations.

from sklearn.datasets import load_digits
import pandas as pd
digits = load_digits()
pd_df=pd.DataFrame(digits.data)
pd_df['target'] = digits.target
pd_df
0 1 2 3 4 5 6 7 8 9 ... 55 56 57 58 59 60 61 62 63 target
0 0.0 0.0 5.0 13.0 9.0 1.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 6.0 13.0 10.0 0.0 0.0 0.0 0
1 0.0 0.0 0.0 12.0 13.0 5.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 11.0 16.0 10.0 0.0 0.0 1
2 0.0 0.0 0.0 4.0 15.0 12.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 3.0 11.0 16.0 9.0 0.0 2
3 0.0 0.0 7.0 15.0 13.0 1.0 0.0 0.0 0.0 8.0 ... 0.0 0.0 0.0 7.0 13.0 13.0 9.0 0.0 0.0 3
4 0.0 0.0 0.0 1.0 11.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 2.0 16.0 4.0 0.0 0.0 4
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1792 0.0 0.0 4.0 10.0 13.0 6.0 0.0 0.0 0.0 1.0 ... 0.0 0.0 0.0 2.0 14.0 15.0 9.0 0.0 0.0 9
1793 0.0 0.0 6.0 16.0 13.0 11.0 1.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 6.0 16.0 14.0 6.0 0.0 0.0 0
1794 0.0 0.0 1.0 11.0 15.0 1.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 2.0 9.0 13.0 6.0 0.0 0.0 8
1795 0.0 0.0 2.0 10.0 7.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 5.0 12.0 16.0 12.0 0.0 0.0 9
1796 0.0 0.0 10.0 14.0 8.0 1.0 0.0 0.0 0.0 2.0 ... 0.0 0.0 1.0 8.0 12.0 14.0 12.0 1.0 0.0 8

1797 rows × 65 columns

The important thing is that the given "pd_df" dataframe in the following argument has to be concatenated with the target vector. Then, just specify as second argument which column name has the target. The program is making automatically the separation :

CC=ClustersCharacteristics(pd_df,label_target="target")

Data tools

The ClustersCharacteristics object creates attributes that define clusters. We can find for example the barycenter.

CC.data_barycenter
0      0.000000
1      0.303840
2      5.204786
3     11.835838
4     11.848080
          ...    
59    12.089037
60    11.809126
61     6.764051
62     2.067891
63     0.364496
Length: 64, dtype: float64

But also centroids, where the column j of the following matrix correspond to the coordinates of centroid of cluster j.

CC.data_centroids
target 0 1 2 3 4 5 6 7 8 9
0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.022472 0.010989 0.932203 0.644809 0.000000 0.967033 0.000000 0.167598 0.143678 0.144444
2 4.185393 2.456044 9.666667 8.387978 0.453039 9.983516 1.138122 5.100559 5.022989 5.683333
3 13.095506 9.208791 14.186441 14.169399 7.055249 13.038462 11.165746 13.061453 11.603448 11.833333
4 11.297753 10.406593 9.627119 14.224044 11.497238 13.895604 9.585635 14.245810 12.402299 11.255556
... ... ... ... ... ... ... ... ... ... ...
59 13.561798 9.137363 13.966102 14.650273 7.812155 14.736264 10.685083 11.659218 12.695402 12.044444
60 13.325843 13.027473 13.118644 13.972678 11.812155 9.362637 15.093923 2.206704 13.011494 13.144444
61 5.438202 8.576923 11.796610 8.672131 1.955801 2.532967 13.044199 0.011173 6.735632 8.894444
62 0.275281 3.049451 8.022599 1.409836 0.000000 0.197802 4.480663 0.000000 1.206897 2.094444
63 0.000000 1.494505 1.932203 0.065574 0.000000 0.000000 0.093923 0.000000 0.011494 0.055556

64 rows × 10 columns

We can show the list of clusters labels :

CC.labels_clusters
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

And look for the data with the same label target. For example we take here the first cluster label of the above list.

Cluster=CC.labels_clusters[0]
CC.data_clusters[Cluster]
0 1 2 3 4 5 6 7 8 9 ... 54 55 56 57 58 59 60 61 62 63
0 0.0 0.0 5.0 13.0 9.0 1.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 6.0 13.0 10.0 0.0 0.0 0.0
10 0.0 0.0 1.0 9.0 15.0 11.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 1.0 10.0 13.0 3.0 0.0 0.0
20 0.0 0.0 3.0 13.0 11.0 7.0 0.0 0.0 0.0 0.0 ... 1.0 0.0 0.0 0.0 2.0 12.0 13.0 4.0 0.0 0.0
30 0.0 0.0 10.0 14.0 11.0 3.0 0.0 0.0 0.0 4.0 ... 0.0 0.0 0.0 0.0 11.0 16.0 12.0 3.0 0.0 0.0
36 0.0 0.0 6.0 14.0 10.0 2.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 7.0 16.0 11.0 1.0 0.0 0.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1739 0.0 0.0 10.0 11.0 7.0 0.0 0.0 0.0 0.0 4.0 ... 1.0 0.0 0.0 0.0 7.0 12.0 8.0 0.0 0.0 0.0
1745 0.0 0.0 7.0 14.0 8.0 4.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 6.0 13.0 7.0 0.0 0.0 0.0
1746 0.0 0.0 9.0 15.0 6.0 0.0 0.0 0.0 0.0 2.0 ... 1.0 0.0 0.0 0.0 8.0 15.0 11.0 4.0 0.0 0.0
1768 0.0 0.0 5.0 16.0 10.0 0.0 0.0 0.0 0.0 0.0 ... 5.0 0.0 0.0 0.0 4.0 15.0 16.0 8.0 1.0 0.0
1793 0.0 0.0 6.0 16.0 13.0 11.0 1.0 0.0 0.0 0.0 ... 1.0 0.0 0.0 0.0 6.0 16.0 14.0 6.0 0.0 0.0

178 rows × 64 columns

Users are able to get a pairwise distance matrix generated by the Scipy library (fast). If (xi,j)i,j is the returned matrix, then xi,j is the distance between element of index i and element of index j. The matrix is symetric as we use Euclidian norm to evaluate distances.

CC.data_every_element_distance_to_every_element
0 1 2 3 4 5 6 7 8 9 ... 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
0 0.000000 59.556696 54.129474 47.571000 50.338852 43.908997 48.559242 56.000000 44.395946 40.804412 ... 39.874804 49.749372 52.640289 51.458721 49.989999 36.249138 26.627054 50.378567 37.067506 47.031904
1 59.556696 0.000000 41.629317 45.475268 47.906158 47.127487 40.286474 50.960769 48.620983 52.820451 ... 52.009614 48.969378 42.965102 32.572995 47.707442 51.390661 59.177699 38.587563 48.569538 50.328918
2 54.129474 41.629317 0.000000 53.953684 52.096065 55.443665 45.650849 49.335586 42.602817 54.836119 ... 59.076222 47.927028 46.335731 39.191836 46.936127 51.826634 52.009614 38.340579 50.774009 43.954522
3 47.571000 45.475268 53.953684 0.000000 51.215232 33.660065 47.254629 56.824291 42.449971 45.166359 ... 37.934153 55.569776 50.099900 43.988635 58.566202 40.286474 55.551778 49.527770 44.147480 41.267421
4 50.338852 47.906158 52.096065 51.215232 0.000000 54.147945 36.959437 59.481089 52.507142 55.054518 ... 48.620983 26.172505 55.794265 48.723711 31.416556 53.981478 51.449004 46.882833 52.668776 50.970580
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1792 36.249138 51.390661 51.826634 40.286474 53.981478 29.325757 52.191953 55.605755 40.037482 36.262929 ... 31.749016 54.543561 55.758407 48.083261 55.488738 0.000000 41.940434 46.151923 23.537205 40.963398
1793 26.627054 59.177699 52.009614 55.551778 51.449004 49.325450 45.354162 60.456596 48.041649 47.265209 ... 43.416587 45.912961 53.272882 52.449976 46.324939 41.940434 0.000000 46.957428 42.438190 46.465041
1794 50.378567 38.587563 38.340579 49.527770 46.882833 46.904158 33.466401 54.516053 34.885527 49.929951 ... 45.077711 46.421978 33.896903 29.189039 42.602817 46.151923 46.957428 0.000000 44.158804 28.879058
1795 37.067506 48.569538 50.774009 44.147480 52.668776 32.557641 48.207883 55.928526 37.000000 28.827071 ... 38.183766 50.507425 54.359912 47.265209 48.754487 23.537205 42.438190 44.158804 0.000000 39.420807
1796 47.031904 50.328918 43.954522 41.267421 50.970580 38.496753 40.224371 56.267220 28.337255 40.926764 ... 38.288379 50.941143 38.820098 38.600518 49.223978 40.963398 46.465041 28.879058 39.420807 0.000000

1797 rows × 1797 columns

While centroids are not elements of the dataset, we can also compute the distance between each element to each centroid.

CC.data_every_element_distance_to_centroids
0 1 2 3 4 5 6 7 8 9
0 14.013361 47.567376 43.896678 39.554151 40.407399 36.647929 41.599287 43.074401 37.369109 32.423583
1 54.059820 19.017525 38.701490 42.313696 38.269485 42.273369 44.388144 40.861554 33.800663 44.312148
2 47.757029 32.206345 37.375370 45.438311 43.187064 50.233787 43.272912 41.584089 33.846710 45.754658
3 44.250476 36.468356 33.283540 22.386098 48.069136 36.198086 41.894212 45.404349 36.063988 31.605201
4 45.592148 39.322928 52.408033 51.138040 28.340976 48.653228 39.984571 48.264247 44.208386 48.142841
... ... ... ... ... ... ... ... ... ... ...
1792 34.293071 41.151239 43.677849 30.575459 45.769008 36.516206 46.428263 42.576472 33.327387 16.959423
1793 20.429465 48.646926 47.491512 45.995613 40.876460 40.516369 41.939685 46.740119 40.285358 40.804954
1794 44.631741 29.885611 38.886808 43.396579 36.316532 42.594489 37.825320 42.725794 25.598846 42.437926
1795 34.565247 39.389382 43.806621 35.557630 41.311856 38.202818 41.673728 42.664164 32.926630 25.207579
1796 41.031409 37.724803 37.444086 36.772758 42.390657 40.799218 33.921312 45.775584 28.071988 35.917805

1797 rows × 10 columns

It is possible to generate a matrix of intercentroid distance. If (xi,j)i,j is the returned matrix, then xi,j is the distance between centroid of cluster i to centroid of cluster j. These distances are not related to points of the dataset. We put NaN into the diagonal terms in order to facilitate the manipulation of min/max.

0 1 2 3 4 5 6 7 8 9
0 nan 42.026024 39.274919 37.062579 35.981220 34.078029 34.274506 41.772576 32.909593 29.617374
1 42.026024 nan 28.949723 31.742287 28.674700 32.469295 34.570287 31.187817 20.950348 32.126942
2 39.274919 28.949723 nan 26.489600 42.689686 32.375712 36.657425 35.570382 25.605848 32.960968
3 37.062579 31.742287 26.489600 nan 43.499594 29.822474 41.152654 33.369483 25.511462 21.103269
4 35.981220 28.674700 42.689686 43.499594 nan 35.577158 30.756650 33.444921 31.858925 38.689544
5 34.078029 32.469295 32.375712 29.822474 35.577158 nan 35.573804 32.098017 25.867262 28.060732
6 34.274506 34.570287 36.657425 41.152654 30.756650 35.573804 nan 43.514148 31.227114 39.306699
7 41.772576 31.187817 35.570382 33.369483 33.444921 32.098017 43.514148 nan 27.364089 33.513179
8 32.909593 20.950348 25.605848 25.511462 31.858925 25.867262 31.227114 27.364089 nan 24.630553
9 29.617374 32.126942 32.960968 21.103269 38.689544 28.060732 39.306699 33.513179 24.630553 nan

Scores

There are many indices that allow users to evaluate the quality of clusters, such as internal cluster validation indices. In Python development, some libraries compute such scores, but it is not completely done. In this library, these scores have been implemented :

  • Total dispersion matrix
  • Within cluster dispersion matrixes
  • Between group dispersion matrix
  • Total sum square
  • Pooled within cluster dispersion

The implemented indexes are :

  • Ball-Hall Index
  • Dunn Index
  • Generalized Dunn Indexes (18 indexes)
  • C Index
  • Banfeld-Raftery Index
  • Davies-Bouldin Index
  • Calinski-Harabasz Index
  • Ray-Turi Index
  • Xie-Beni Index
  • Ratkowsky Lance Index
  • SD Index
  • Mclain Rao Index
  • Scott-Symons Index
  • PBM Index
  • Point biserial Index
  • Det Ratio Index
  • Log SumSquare Ratio Index
  • Silhouette Index (computed with scikit-learn)
  • Wemmert-Gançarski Index (Thanks to M.Gançarski for this intership)

Main reference for all these scores :

Clustering Indices

Bernard Desgraupes, University Paris Ouest - Lab Modal’X , November 2017

https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf

In this library, there are two types of methods to calculate these scores: Using IndexCore which automatically caches the already calculated indexes or calculating directly using the "score_index_" methods. The second method can make the calculation of the same index repetitive, which can be very slow because we know that some of these indexes have a very high computational complexity.

First method using IndexCore (faster)

CC.compute_every_index()
{'general': {'max': {'Between-group total dispersion': 908297.1736053203,
'Mean quadratic error': 696.0267765360618,
'Silhouette Index': 0.16294320522575195,
'Dunn Index': 0.25897601382124175,
'Generalized Dunn Indexes': {'GDI (1, 1)': 0.25897601382124175,
'GDI (1, 2)': 0.9076143747196692,
'GDI (1, 3)': 0.3158503201955148,
'GDI (2, 1)': 0.25897601382124175,
'GDI (2, 2)': 0.9076143747196692,
'GDI (2, 3)': 0.3158503201955148,
'GDI (3, 1)': 0.5790691834873279,
'GDI (3, 2)': 2.0294215944379173,
'GDI (3, 3)': 0.7062398726473335,
'GDI (4, 1)': 0.2875582147985151,
'GDI (4, 2)': 1.0077843328765126,
'GDI (4, 3)': 0.35070952278095474,
'GDI (5, 1)': 0.28515682596025516,
'GDI (5, 2)': 0.9993683603053982,
'GDI (5, 3)': 0.34778075952490317,
'GDI (6, 1)': 0.6033066382644287,
'GDI (6, 2)': 2.1143648370097905,
'GDI (6, 3)': 0.735800169522378},
'Wemmert-Gancarski Index': 0.2502241827215019,
'Calinski-Harabasz Index': 144.1902786959258,
'Ratkowsky-Lance Index': nan,
'Point Biserial Index': -4.064966952313242,
'PBM Index': 34.22417733472788},
'max diff': {'Trace WiB Index': nan, 'Trace W Index': 1250760.117435303},
'min': {'Banfeld-Raftery Index': 11718.207536490032,
'Ball Hall Index': 695.801129352618,
'C Index': 0.1476415026698158,
'Ray-Turi Index': 1.5857819700225737,
'Xie-Beni Index': 1.9551313947642188,
'Davies Bouldin Index': 2.1517097380390937,
'SD Index': [array([0.627482, 0.070384])],
'Mclain-Rao Index': 0.7267985756237975,
'Scott-Symons Index': nan},
'min diff': {'Det Ratio Index': nan,
'Log BGSS/WGSS Index': -0.3199351306684197,
'S_Dbw Index': nan,
'Nlog Det Ratio Index': nan}},
'clusters': {'max': {'Centroid distance to barycenter': [26.422334274375757,
20.184062405495773,
22.958470492954795,
21.71559561353746,
25.717240507145213,
20.283308612864644,
26.419951469008378,
24.426658073844308,
13.44306158441342,
19.876908956223936],
'Between-group Dispersion': [124268.87523421964,
74146.1402843885,
93295.17202553005,
86296.77799167577,
119709.13913372548,
74877.09470781704,
126340.5042480812,
106802.4308135141,
31444.567428645732,
71116.47173772276],
'Average Silhouette': [0.3608993843537291,
0.05227459502398472,
0.14407593888502124,
0.15076708301431302,
0.16517001390130848,
0.1194825125348905,
0.28763816949713245,
0.19373598833558672,
0.08488231267929798,
0.07117051617968871],
'KernelDensity mean': [-87.26207798353086,
-102.79627948741418,
-118.2807433740146,
-102.80193279131969,
-102.79094365877583,
-102.79645332546204,
-87.27879146450985,
-102.77983243274437,
-118.2636521439672,
-118.29755528330563],
'Ball Hall Index': [396.35042923873254,
940.6359437266029,
751.2059752944557,
633.6276389262146,
736.2863160465186,
757.3853701243812,
512.8915478770488,
734.7467931712492,
741.1588717135685,
753.7224074074073]},
'min': {'Within-Cluster Dispersion': [70550.3764044944,
171195.74175824173,
132963.45762711865,
115953.85792349727,
133267.82320441987,
137844.13736263738,
92833.37016574583,
131519.67597765362,
128961.64367816092,
135670.03333333333],
'Largest element distance': [54.543560573178574,
72.85602240034794,
67.0,
62.3377895020348,
71.69379331573968,
66.53570470055908,
61.155539405682624,
67.93379129711516,
61.171888968708494,
63.773035054010094],
'Inter-element mean distance': [27.495251790928528,
41.577045912127325,
37.66525398978789,
34.81272464303223,
37.28558306007683,
38.08288651715454,
31.222158502521683,
37.241230341156786,
37.938810358062234,
37.830620986872184],
'Davies Bouldin Index': array([1.55628353, 2.70948787, 2.09498538, 2.43120015, 1.96455875,
      2.09074874, 1.58102612, 1.94811882, 2.70948787, 2.43120015]),
'C Index': [0.15780619270180213,
0.4626045226116365,
0.37889533673771314,
0.31459485530776515,
0.3693066184157008,
0.38636193134197444,
0.23717385124578905,
0.36902306811086555,
0.3857833597084178,
0.3815092165505222]}},
'radius': {'min': {'Radius min': {0: 11.963104233270684,
1: 16.495963249417844,
2: 17.228366828448973,
3: 15.096075210359995,
4: 15.943646753449636,
5: 16.46455777853301,
6: 12.786523861254974,
7: 14.61523732739271,
8: 18.374826032773953,
9: 16.317673899226},
'Radius mean': {0: 19.364954,
1: 29.868519,
2: 26.747682,
3: 24.578193,
4: 26.464614,
5: 27.18575,
6: 22.162453,
7: 26.412302,
8: 26.896195,
9: 26.728077},
'Radius median': {0: 19.090152,
1: 27.705495,
2: 25.299287,
3: 23.495162,
4: 26.434238,
5: 27.194139,
6: 21.579562,
7: 25.358031,
8: 26.982504,
9: 25.201186},
'Radius 75th Percentile': {0: 22.142983,
1: 35.627396,
2: 30.263862,
3: 27.808539,
4: 29.727508,
5: 29.221274,
6: 24.736136,
7: 30.21675,
8: 30.137334,
9: 29.966933},
'Radius max': {0: 35.381597,
1: 48.76808,
2: 48.6619,
3: 40.02036,
4: 51.535976,
5: 40.584931,
6: 42.250871,
7: 44.424333,
8: 38.175815,
9: 45.985382}}}}

We can take the corresponding code in the indices.json file with this call

CC._get_all_index

{'general': {'max': {'Between-group total dispersion': 'G-Max-01', 'Mean quadratic error': 'G-Max-02', 'Silhouette Index': 'G-Max-03', 'Dunn Index': 'G-Max-04', 'Generalized Dunn Indexes': 'G-Max-GDI', 'Wemmert-Gancarski Index': 'G-Max-05', 'Calinski-Harabasz Index': 'G-Max-06', 'Ratkowsky-Lance Index': 'G-Max-07', 'Point Biserial Index': 'G-Max-08', 'PBM Index': 'G-Max-09'}, 'max diff': {'Trace WiB Index': 'G-MaxD-01', 'Trace W Index': 'G-MaxD-02'}, 'min': {'Banfeld-Raftery Index': 'G-Min-01', 'Ball Hall Index': 'G-Min-02', 'C Index': 'G-Min-03', 'Ray-Turi Index': 'G-Min-04', 'Xie-Beni Index': 'G-Min-05', 'Davies Bouldin Index': 'G-Min-06', 'SD Index': 'G-Min-07', 'Mclain-Rao Index': 'G-Min-08', 'Scott-Symons Index': 'G-Min-09'}, 'min diff': {'Det Ratio Index': 'G-MinD-01', 'Log BGSS/WGSS Index': 'G-MinD-02', 'S_Dbw Index': 'G-MinD-03', 'Nlog Det Ratio Index': 'G-MinD-04'}}, 'clusters': {'max': {'Centroid distance to barycenter': 'C-Max-01', 'Between-group Dispersion': 'C-Max-02', 'Average Silhouette': 'C-Max-03', 'KernelDensity mean': 'C-Max-04', 'Ball Hall Index': 'C-Max-05'}, 'min': {'Within-Cluster Dispersion': 'C-Min-01', 'Largest element distance': 'C-Min-02', 'Inter-element mean distance': 'C-Min-03', 'Davies Bouldin Index': 'C-Min-04', 'C Index': 'C-Min-05'}}, 'radius': {'min': {'Radius min': 'R-Min-01', 'Radius mean': 'R-Min-02', 'Radius median': 'R-Min-03', 'Radius 75th Percentile': 'R-Min-04', 'Radius max': 'R-Min-05'}}}

These codes are usefull when you want to generate a single index using IndexCore :

CC.generate_output_by_info_type("general", "max", "G-Max-01")
908297.1736053203

Second method using "score_index_" methods

CC.score_between_group_dispersion()
908297.1736053203

Make the same result as above but it computes a second time the same score.

Speed test of different scores

pd_df :  
shape - (1797, 65) 
 total elements=116805 

Columns types:
pd_df.dtypes.value_counts() : 64 x float64 + 1 x Int32

score_index_ball_hall 

5.06 ms ± 79.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

score_index_banfeld_Raftery

5.02 ms ± 39.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

score_index_c

104 ms ± 550 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

score_index_c_for_each_cluster

95.5 ms ± 720 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

score_index_calinski_harabasz 

16.5 ms ± 257 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

score_index_davies_bouldin 

12.3 ms ± 76.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

score_index_davies_bouldin_for_each_cluster 

12.3 ms ± 300 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

score_index_det_ratio 

181 ms ± 4.09 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

score_index_dunn

19.6 ms ± 1.06 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)

score_index_generalized_dunn_matrix

994 ms ± 41.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

score_index_Log_Det_ratio

180 ms ± 2.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

score_index_log_ss_ratio 

16.3 ms ± 249 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

score_index_mclain_rao 

63.5 ms ± 6.55 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

score_index_PBM 

23.5 ms ± 3.84 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

score_index_point_biserial

50.3 ms ± 434 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

score_index_ratkowsky_lance 

12.3 ms ± 254 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

score_index_ray_turi 

23.2 ms ± 889 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

score_index_scott_symons

153 ms ± 6.25 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

score_index_SD 

211 ms ± 4.37 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

score_index_trace_WiB 

138 ms ± 2.69 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

score_index_wemmert_gancarski 

8.13 ms ± 93 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

score_index_xie_beni

85.8 ms ± 1.31 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Confusion Hypersphere

The confusion hypersphere subclass counts the number of element contained inside a n-dim sphere (hypersphere) of given radius and centered on each cluster centroid. The given radius is the same for each hypersphere.

Args : "counting_type=" : ('including' or 'excluding') - If including, then the elements belonging cluster i and contained inside the hypersphere of centroid i are counted (for i=j). If excluding, then they're not counted. "proportion=" : (bool) Return the proportion of element. Default option = False.

self.confusion_hypersphere_matrix

CC.confusion_hypersphere_matrix(radius=35, counting_type="including", proportion=True)
C:0 C:1 C:2 C:3 C:4 C:5 C:6 C:7 C:8 C:9
H:0 0.994382 0.000000 0.000000 0.010929 0.000000 0.032967 0.060773 0.000000 0.005747 0.211111
H:1 0.000000 0.736264 0.090395 0.103825 0.187845 0.016484 0.110497 0.055866 0.574713 0.022222
H:2 0.000000 0.142857 0.881356 0.355191 0.000000 0.005495 0.000000 0.000000 0.310345 0.000000
H:3 0.000000 0.005495 0.225989 0.950820 0.000000 0.258242 0.000000 0.016760 0.327586 0.666667
H:4 0.050562 0.032967 0.000000 0.000000 0.928177 0.027473 0.154696 0.027933 0.028736 0.000000
H:5 0.095506 0.000000 0.000000 0.103825 0.005525 0.950549 0.022099 0.005587 0.293103 0.133333
H:6 0.089888 0.027473 0.000000 0.000000 0.033149 0.021978 0.983425 0.000000 0.068966 0.000000
H:7 0.000000 0.071429 0.028249 0.071038 0.060773 0.005495 0.000000 0.882682 0.201149 0.055556
H:8 0.044944 0.423077 0.293785 0.431694 0.011050 0.170330 0.110497 0.184358 0.977011 0.394444
H:9 0.421348 0.000000 0.005650 0.759563 0.000000 0.351648 0.000000 0.000000 0.356322 0.872222

To interpret this, if (xi,j)i,j is the returned matrix, then xi,j is the number of elements belonging cluster j that are contained inside the hypersphere with given radius centered on centroid of cluster i . If proportion is on True, then the number of elements becomes the proportion of elements belonging cluster j.

self.confusion_hypersphere_for_linspace_radius_each_element

This method returns the results of the above method for a linear radius space. "n_pts=" allows users to set the radius range.

CC.confusion_hypersphere_for_linspace_radius_each_element(radius=35, counting_type="excluding", n_pts=10)
0 1 2 3 4 5 6 7 8 9
Radius
0.0000 0 0 0 0 0 0 0 0 0 0
7.1578 0 0 0 0 0 0 0 0 0 0
14.3155 0 0 0 0 0 0 0 0 0 0
21.4733 0 0 0 0 0 0 0 0 0 0
28.6311 3 10 3 36 1 24 1 0 34 30
35.7889 192 171 161 398 71 211 122 68 473 325
42.9466 1004 747 802 1023 641 940 837 765 1285 950
50.1044 1567 1346 1397 1470 1318 1536 1534 1369 1558 1479
57.2622 1602 1625 1589 1636 1624 1638 1629 1603 1566 1614
64.4200 1602 1638 1593 1647 1629 1638 1629 1611 1566 1620

confusion_hyperphere_around_specific_point_for_two_clusters

This method returns the number of elements belonging given Cluster1 or given Cluster2 that are contained inside the hypersphere of given radius and centered on given Point.

Point= CC.data_features.iloc[0] #Choose an  observation  of the dataset
Cluster1= CC.labels_clusters[0] #Choose the cluster 1
Cluster2=CC.labels_clusters[1] #Choose the cluster 2
radius=110 #Large radius to capture the total of both clusters, the result should be the sum of data_clusters[Cluster1] and data_clusters[Cluster2] cardinals

CC.confusion_hyperphere_around_specific_point_for_two_clusters(Point,Cluster1,Cluster2, radius)
0    360 
dtype: int64

360 elements belonging Cluster or Cluster2 are contained inside this hypersphere.

Info

The Info subclass shows two different informative boards that gives many kinds of informations about the general dataset and the clusters. The type column can be : "max", "min", "max diff", "min diff". If 'max' (respect. 'min'), then higher (respect. lower) is the score, the better is the clustering. For "max diff" and "min diff", it is usefull to use them when you need to find the best number of clusters. Max diff will correspond to the maximum difference between clustering 1 with K clusters and clustering 2 with K' clusters (K!=K'). See the Bernard Desgraupes reference for more explanations.

CC.general_info(hide_nan=False)
Current NaN Index :

Ratkowsky-Lance Index    -          G-Max-07
Trace WiB Index          -          G-MaxD-01
Scott-Symons Index       -          G-Min-09
Det Ratio Index          -          G-MinD-01
S_Dbw Index              -          G-MinD-03
Nlog Det Ratio Index     -          G-MinD-04
General Informations
Between-group total dispersion max 908297.173605
Mean quadratic error max 696.026777
Silhouette Index max 0.162943
Dunn Index max 0.258976
Wemmert-Gancarski Index max 0.250224
Calinski-Harabasz Index max 144.190279
Point Biserial Index max -4.064967
PBM Index max 34.224177
Trace W Index max diff 1250760.117435
Banfeld-Raftery Index min 11718.207536
Ball Hall Index min 695.801129
C Index min 0.147642
Ray-Turi Index min 1.585782
Xie-Beni Index min 1.955131
Davies Bouldin Index min 2.15171
SD Index min [[0.627482, 0.070384]]
Mclain-Rao Index min 0.726799
Log BGSS/WGSS Index min diff -0.319935
GDI (1, 1) max 0.258976
GDI (1, 2) max 0.907614
GDI (1, 3) max 0.31585
GDI (2, 1) max 0.258976
GDI (2, 2) max 0.907614
GDI (2, 3) max 0.31585
GDI (3, 1) max 0.579069
GDI (3, 2) max 2.029422
GDI (3, 3) max 0.70624
GDI (4, 1) max 0.287558
GDI (4, 2) max 1.007784
GDI (4, 3) max 0.35071
GDI (5, 1) max 0.285157
GDI (5, 2) max 0.999368
GDI (5, 3) max 0.347781
GDI (6, 1) max 0.603307
GDI (6, 2) max 2.114365
GDI (6, 3) max 0.7358
CC.clusters_info
0 1 2 3 4 5 6 7 8 9
index Type
Centroid distance to barycenter max 26.42 20.18 22.95 21.71 25.71 20.28 26.41 24.42 13.44 19.87
Between-group Dispersion max 124268 74146 93295 86296 119709 74877 126340 106802 31444 71116
Average Silhouette max 0.36 0.05 0.14 0.15 0.16 0.11 0.28 0.19 0.08 0.07
KernelDensity mean max -87.26 -102.79 -118.28 -102.80 -102.79 -102.79 -87.27 -102.77 -118.26 -118.29
Ball Hall Index max 396.35 940.63 751.20 633.62 736.28 757.38 512.89 734.74 741.15 753.72
Within-Cluster Dispersion min 70550 171195 132963 115953 133267 137844 92833 131519 128961 135670
Largest element distance min 54.54 72.85 67.00 62.33 71.69 66.53 61.15 67.93 61.17 63.77
Inter-element mean distance min 27.49 41.57 37.66 34.81 37.28 38.08 31.22 37.24 37.93 37.83
Davies Bouldin Index min 1.55 2.70 2.09 2.43 1.96 2.09 1.58 1.94 2.70 2.43
C Index min 0.15 0.46 0.37 0.31 0.36 0.38 0.23 0.36 0.38 0.38
Radius min min 11.96 16.49 17.22 15.09 15.94 16.46 12.78 14.61 18.37 16.31
Radius mean min 19.36 29.86 26.74 24.57 26.46 27.18 22.16 26.41 26.89 26.72
Radius median min 19.09 27.70 25.29 23.49 26.43 27.19 21.57 25.35 26.98 25.20
Radius 75th Percentile min 22.14 35.62 30.26 27.80 29.72 29.22 24.73 30.21 30.13 29.96
Radius max min 35.38 48.76 48.66 40.02 51.53 40.58 42.25 44.42 38.17 45.98

Density

The Density subclass is based on projection 2D or 3D using dimensionnality reductors such as PCA or UMAP. As UMAP is only possible in 2D, we will only use PCA for 3D Density graphs. The main idea for approximating density is about summing Gaussian Distribution n-dim laws centered on each dataset point on a meshgrid corresponding to 2D or 3D. This section returns a lot of data that are packed in a native Python dict. Each element returned (excluding the main return) inside the dict has to be activated by its own argument. See the following example:

self.density_projection_2D

Args:

  • reduction_method : "PCA" or "UMAP"
  • percentile : percentile of density that corresponds to the minimum value to show
  • return_data :If True, return 2D PCA Data
  • return_clusters_density : If True, return the 2D Grid with the Z values for each cluster
CC.density_projection_2D("PCA", 95, return_data=True, return_clusters_density=True)
{'Z-Grid':             -27.494448  -27.205068  -26.915688  -26.626307  -26.336927  \
 -31.169904    0.000000    0.000000    0.000000    0.000000    0.000000   
 -30.853975    0.000000    0.000000    0.000000    0.000000    0.000000   
 -30.538045    0.000000    0.000000    0.000000    0.000000    0.000000   
 -30.222115    0.000000    0.000000    0.000000    0.000000    0.000000   
 -29.906185    0.000000    0.000000    0.000000    0.000000    0.000000   
 ...                ...         ...         ...         ...         ...         
 30.436407     0.000000    0.000000    0.000000    0.000000    0.000000  
 30.752337     0.000000    0.000000    0.000000    0.000000    0.000000  
 31.068267     0.000000    0.000000    0.000000    0.000000    0.000000  
 31.384197     0.000000    0.000000    0.000000    0.000000    0.000000  
 31.700126     0.000000    0.000000    0.000000    0.000000    0.000000  

 [200 rows x 200 columns],
 'Clusters Density': {0: array([[0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,
          2.26543202e-251, 6.72200949e-253, 1.80509292e-254],
         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,
          2.39644309e-090, 2.99562311e-092, 3.38890645e-094]]),
  1: array([[1.22473352e-190, 9.95843640e-187, 7.32812819e-183, ...,
          1.89152820e-043, 5.31903131e-045, 1.35364451e-046],
         [6.13307159e-189, 4.98686467e-185, 3.66969092e-181, ...,
         [2.18683154e-176, 3.42747973e-173, 4.86168499e-170, ...,
          6.11416273e-291, 1.45371826e-293, 3.12806562e-296]]),
  2: array([[9.82858841e-081, 1.91715088e-079, 4.01121949e-078, ...,
          3.95263976e-164, 6.05314934e-167, 8.38934205e-170],
         [1.15888672e-078, 2.15624607e-077, 3.99557766e-076, ...,
          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
         [2.14277916e-156, 6.99479702e-154, 2.07015420e-151, ...,
          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]]),
                              ...
          1.34702113e-296, 1.14119413e-299, 8.74977734e-303]]),
  8: array([[3.68438507e-120, 1.91948293e-117, 9.05015769e-115, ...,
          1.78634585e-151, 1.09968510e-153, 6.12666390e-156],
         [1.19395354e-118, 6.22023065e-116, 2.93277042e-113, ...,        
         [2.30028280e-221, 1.12585950e-218, 4.98917831e-216, ...,
          3.82113467e-265, 9.90939747e-269, 2.32570436e-272]]),
  9: array([[5.32990773e-136, 8.38778107e-133, 1.19461196e-129, ...,
          3.98260675e-172, 2.88650900e-175, 1.89334938e-178],
         [5.65560268e-135, 8.90033385e-132, 1.26761124e-128, ...,
         [3.33187669e-070, 4.02748126e-069, 4.64453319e-068, ...,
          1.02174508e-253, 1.38205190e-256, 1.69183696e-259]])},
 '2D PCA Data':            PCA0       PCA1
 0     -1.259467  21.274883
 1      7.957610 -20.768700
 ...            ...
 1795  -4.872099  12.423954
 1796  -0.344388   6.365550

 [1797 rows x 2 columns]}

self.density_projection_3D

Use PCA 3D to project the dataset and make a 3D meshgrid to estimate the density on it with the 3D Gaussian distribution. Args:

  • percentile : percentile of density that corresponds to the minimum value to show
  • return_grid :If True, return 3D Grid
  • return_clusters_density : If True, return the 3D Grid with the A values for each cluster
CC.density_projection_3D(99, return_grid=True, return_clusters_density=True)
{'A-Grid': array([[[3.48581797e-15, 1.62080230e-14, 6.90041904e-14, ...,
          5.83374041e-13, 1.92066889e-13, 5.70629214e-14],
         [6.60425258e-16, 6.17767595e-15, 5.01029852e-14, ...,
          3.52400611e-12, 5.50927146e-13, 7.45284376e-14]]]),
 'Clusters Density': {0: array([[[3.40385502e-48, 3.36307101e-47, 2.87017113e-46, ...,
           6.07579853e-65, 1.97018960e-66, 5.51854095e-68],
          [6.12214966e-32, 7.73521170e-31, 8.44230524e-30, ...,
           6.56667612e-49, 8.52648274e-51, 9.59653245e-53]],
         [[1.30566741e-19, 7.34944932e-19, 3.57377188e-18, ...,
           3.11782459e-28, 1.14260012e-29, 3.68476733e-31],
          [6.32366666e-22, 6.00865462e-21, 4.93929478e-20, ...,
           4.28020934e-27, 2.75837798e-28, 1.53709049e-29]]]),
  1: array([[[8.98310922e-30, 6.71213878e-29, 5.03213279e-28, ...,
           2.87124806e-29, 8.73589680e-30, 2.29930435e-30]
          [5.02339294e-21, 2.49290742e-20, 1.30264666e-19, ...,
           2.55638337e-14, 4.29622018e-15, 6.43949192e-16]],
          [2.83167266e-35, 8.65300585e-35, 2.28427319e-34, ...,
           8.11025209e-33, 1.61201265e-33, 2.82711740e-34]]]),
  2: array([[[1.36203887e-28, 9.67318866e-28, 5.96928017e-27, ...,
           1.54322295e-14, 5.09928476e-15, 1.48590282e-15],
                              ...
  8: array([[[6.84981203e-33, 1.26631274e-31, 2.37110234e-30, ...,
           9.64415278e-27, 5.73382414e-28, 3.22330467e-29],
          [1.74336209e-34, 9.68068937e-34, 4.64782487e-33, ...,
           1.05223775e-37, 1.79602795e-38, 2.64802829e-39]]]),
  9: array([[[3.60638003e-23, 1.23523984e-22, 5.16583215e-22, ...,
           5.75818352e-33, 1.73152931e-34, 4.49760341e-36],
           2.86151947e-52, 3.19445757e-53, 3.40743714e-54]]])},
 '3D Grid': {'X': array([[[-37.40388626, -37.40388626, -37.40388626, ..., -37.40388626,
           -37.40388626, -37.40388626],
          [ 38.04015058,  38.04015058,  38.04015058, ...,  38.04015058,
            38.04015058,  38.04015058]]]),
  'Y': array([[[-32.99333756, -32.99333756, -32.99333756, ..., -32.99333756,
           -32.99333756, -32.99333756],
            36.11064515,  36.11064515]]]),
  'Z': array([[[-35.1620997 , -33.64347275, -32.12484579, ...,  36.21336725,
            37.73199421,  39.25062116],
          [-35.1620997 , -33.64347275, -32.12484579, ...,  36.21336725,
            37.73199421,  39.25062116]]])}}

Utils

This section uses other modules to apply to the current self object. For example, PCA from scikit-learn is implemented. We also use UMAP from umap-learn. The list for utils methods :

Graphs

This subsclass uses Plotly to plot to different data computed with the module.

CC.graph_boxplots_distances_to_centroid(0)

Distance to centroid

CC.graph_PCA_3D()

PCA_3D

CC.graph_reduction_2D("UMAP")

UMAP

CC.graph_reduction_2D("PCA")

PCA2D

CC.graph_reduction_density_2D("PCA", 99, "contour")

reduction_density_2D

CC.graph_reduction_density_2D("UMAP", 99, "contour")

reduction_density_2D

CC.graph_reduction_density_2D("PCA", 99, "interactive")

reduction_density_2D reduction_density_2D

CC.graph_reduction_density_3D(99)

reduction_density_3D

CC.graph_reduction_density_3D(99,clusters=[0,1])

reduction_density_3D

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

Clusters_Features-1.0.3-py3-none-any.whl (65.6 kB view details)

Uploaded Python 3

File details

Details for the file Clusters_Features-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: Clusters_Features-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 65.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.11

File hashes

Hashes for Clusters_Features-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 6fea31627a763385feee9368f8dcaeaf0499d872131946094abceef5d3b19663
MD5 3c7e5895fcc4d1794fabc8e6a5d3e9de
BLAKE2b-256 84538f4f615a1505728785d76cff090f0558607257d006b9ff2fc53e54ef2e9e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page