Python package clustimage is for unsupervised clustering of images.
Project description
clustimage
- clustimage is a python package for unsupervised clustering of images.
Installation
- Install clustimage from PyPI (recommended). clustimage is compatible with Python 3.6+ and runs on Linux, MacOS X and Windows.
- A new environment can be created as following:
conda create -n env_clustimage python=3.8
conda activate env_clustimage
- Install from pypi
pip install -U clustimage
Import the clustimage package
from clustimage import Clustimage
Simple example using data-array as an input.
# Load library
import matplotlib.pyplot as plt
from clustimage import Clustimage
# init
cl = Clustimage()
# Load example digit data
X = cl.import_example(data='digits')
print(X)
# Each row is an image that can be plotted after reshaping:
plt.imshow(X[0,:].reshape(8,8), cmap='binary')
# array([[ 0., 0., 5., ..., 0., 0., 0.],
# [ 0., 0., 0., ..., 10., 0., 0.],
# [ 0., 0., 0., ..., 16., 9., 0.],
# ...,
# [ 0., 0., 0., ..., 9., 0., 0.],
# [ 0., 0., 0., ..., 4., 0., 0.],
# [ 0., 0., 6., ..., 6., 0., 0.]])
#
# Preprocessing and feature extraction
results = cl.fit_transform(X)
# Scatter
cl.scatter()
# Plot dendrogram
cl.dendrogram()
# Plot the clustered images
cl.plot(cmap='binary')
images with flowers to cluster.
# Load library
from clustimage import Clustimage
# init
cl = Clustimage(method='pca', embedding='tsne')
# load example with flowers
path_to_imgs = cl.import_example(data='flowers')
# Preprocessing and feature extraction
results = cl.fit_transform(path_to_imgs, min_clust=10)
# Scatter
cl.scatter(dot_size=50)
# Plot dendrogram
cl.dendrogram()
# Plot clustered images
cl.plot(ncols=5)
# Predict
results_predict = cl.predict(path_to_imgs[0:5], k=None, alpha=0.05)
cl.plot_predict()
cl.scatter()
Make prediction with unknown input image.
# Predict
results_predict = cl.predict(path_to_imgs[0:5], alpha=0.05)
cl.plot_predict()
cl.scatter()
Make prediction with unknown input image.
from clustimage import Clustimage
# Init
cl = Clustimage(method='pca', grayscale=True, params_pca={'n_components':14})
# Load example with faces
pathnames = cl.import_example(data='faces')
# Detect faces
face_results = cl.detect_faces(pathnames)
# Cluster
results = cl.fit_transform(face_results['facepath'])
# Plot faces
cl.plot_faces()
# Dendrogram depicts the clustering of the faces
cl.dendrogram()
# Make various other plots
cl.scatter()
# Make plot
cl.plot(ncols=2, show_hog=True)
References
Citation
Please cite in your publications if this is useful for your research (see citation).
Maintainers
- Erdogan Taskesen, github: erdogant
Contribute
- All kinds of contributions are welcome!
- If you wish to buy me a Coffee for this work, it is very appreciated :)
Licence
See LICENSE for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
clustimage-1.0.0.tar.gz
(19.3 kB
view details)
Built Distribution
File details
Details for the file clustimage-1.0.0.tar.gz
.
File metadata
- Download URL: clustimage-1.0.0.tar.gz
- Upload date:
- Size: 19.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b01cf8e50a04d8d26a69e6eb02f8764a8b8d8ab0c11cc7119e7e851d445110e |
|
MD5 | 31c15e54d73c4fcb085878a6f30ae726 |
|
BLAKE2b-256 | 431d1ae1d87582326b4154a9dda8ffd894a509a67b4ba40a9c456dc78a36cbde |
File details
Details for the file clustimage-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: clustimage-1.0.0-py3-none-any.whl
- Upload date:
- Size: 18.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cab98ba4818eb8133773fdc8524e72ddd4b3a7341f666ae6b193bad1bc8ee238 |
|
MD5 | 774a8bd7eaba07c8ad7edb7324ddd43f |
|
BLAKE2b-256 | b5c9a51224d34a47fa6f05058bf806022295fa4265bac5ee71532c004f425a52 |