Skip to main content

A fast and flexible implementation of Rigid Body Dynamics algorithms and their analytical derivatives

Project description

mim_solvers

Implementation of efficient numerical optimal control solvers. In particular, the Sequential Quadratic Programming (SQP) solver described in this paper solves nonlinear constrained OCPs efficiently by leveraging sparsity.

All the solvers are implemented based on the API of Crocoddyl (v2). In other words, our solvers take as input a crocoddyl.ShootingProblem.

Examples on how to use the solvers can be found in the examples directory.

Dependencies

Installation

Using conda

conda install mim-solvers --channel conda-forge

Using CMake

git clone --recursive https://github.com/machines-in-motion/mim_solvers.git

cd mim_solvers && mkdir build && cd build

cmake .. [-DCMAKE_BUILD_TYPE=Release] [-DCMAKE_INSTALL_PREFIX=...]

make [-j6] && make install

You can also run unittests using ctest -v and benchmarks using ./benchmarks/ur5 or ./benchmarks/solo12 from the build directory.

Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cmeel_mim_solvers-0.0.4.tar.gz (912.8 kB view details)

Uploaded Source

Built Distributions

cmeel_mim_solvers-0.0.4-0-cp311-cp311-manylinux_2_28_x86_64.whl (607.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

cmeel_mim_solvers-0.0.4-0-cp311-cp311-manylinux_2_28_aarch64.whl (540.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

cmeel_mim_solvers-0.0.4-0-cp310-cp310-manylinux_2_28_x86_64.whl (607.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

cmeel_mim_solvers-0.0.4-0-cp310-cp310-manylinux_2_28_aarch64.whl (540.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

cmeel_mim_solvers-0.0.4-0-cp39-cp39-manylinux_2_28_x86_64.whl (607.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

cmeel_mim_solvers-0.0.4-0-cp39-cp39-manylinux_2_28_aarch64.whl (540.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

cmeel_mim_solvers-0.0.4-0-cp38-cp38-manylinux_2_28_x86_64.whl (607.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

cmeel_mim_solvers-0.0.4-0-cp38-cp38-manylinux_2_28_aarch64.whl (540.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

File details

Details for the file cmeel_mim_solvers-0.0.4.tar.gz.

File metadata

  • Download URL: cmeel_mim_solvers-0.0.4.tar.gz
  • Upload date:
  • Size: 912.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for cmeel_mim_solvers-0.0.4.tar.gz
Algorithm Hash digest
SHA256 82e52961f2ca8d6e34f092bcf1004b95279c2f9092daa7767d7ea5cb8eeefa5a
MD5 f8f001978c4e73ceb9a4bacf25cfa5f1
BLAKE2b-256 5838130d1ad5cba8f9c4fea315ef9dae4df38562968f9d898a93f2ce33b3af40

See more details on using hashes here.

File details

Details for the file cmeel_mim_solvers-0.0.4-0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cmeel_mim_solvers-0.0.4-0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bba3d3dcdc796b880b91f9f93b5b53be0d8883c88ab2852a3cda4b7595cb59cd
MD5 c38fd9ce4e41534210bae3f44fe4d042
BLAKE2b-256 b49ce6b2eba9515bfe5ea67fcd7f4250075a2b3e988a0e67e110f1403154dbd8

See more details on using hashes here.

File details

Details for the file cmeel_mim_solvers-0.0.4-0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cmeel_mim_solvers-0.0.4-0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2162293cecdf44c60cccadb49d89793df0c5eebaba7735d61870ccc2e955a440
MD5 5c307bd190a9a5e2883525cd429ab602
BLAKE2b-256 9724a995fab04f62917273a73131406fdbb36729b593b4b35087e70ffc709b0e

See more details on using hashes here.

File details

Details for the file cmeel_mim_solvers-0.0.4-0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cmeel_mim_solvers-0.0.4-0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1191612b8166ea9e8b2acb1559d516b4161fc795e4c12fad6ef67277d2ee6d10
MD5 45b03e35f1d75d7868de0b777eaa20d0
BLAKE2b-256 7b77d443db2e53af0d43ec3d45c520ac5c60994067b00ed00bd8f63b73f5473a

See more details on using hashes here.

File details

Details for the file cmeel_mim_solvers-0.0.4-0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cmeel_mim_solvers-0.0.4-0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0a4226f15a8b140c86ee237081e97e782b3c7acd1852f95a9a4caec359f252e2
MD5 722d819cc38700942749989f70627be3
BLAKE2b-256 d5b507544423671f9a64108cc4d2686f9bf0a642decb96fb5d12cae8707d681a

See more details on using hashes here.

File details

Details for the file cmeel_mim_solvers-0.0.4-0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cmeel_mim_solvers-0.0.4-0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c487c9a80903805e5729900c90ae2655c76c9ce50dcf2664457a454be8ebadcc
MD5 b6de50643c53d80a14d2e0b776978798
BLAKE2b-256 781f3225197c96df95f75c942445ea44d9c8e8a29cb9c0f75a66bed966377348

See more details on using hashes here.

File details

Details for the file cmeel_mim_solvers-0.0.4-0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cmeel_mim_solvers-0.0.4-0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a54cd9ef5b9e46f0c4767c614d4b2423830252a84d0b78f071a6b0e25e092371
MD5 647ac30b28c2c3f4df858406f7d6710f
BLAKE2b-256 2b4666510c2ccadebe9438ba26aa220e0b026db9084a5eb07356578cdd33f675

See more details on using hashes here.

File details

Details for the file cmeel_mim_solvers-0.0.4-0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cmeel_mim_solvers-0.0.4-0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ff83164819cba90368660230d6249ff44039dc7b9cd43cc7f583eb0988cf0b8b
MD5 29edd92622f6d2933d6f76cc782eca03
BLAKE2b-256 0df565e07b5b429049a01e07e4cfa6300e408564d0e7f3aebcb2bb142a24e565

See more details on using hashes here.

File details

Details for the file cmeel_mim_solvers-0.0.4-0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cmeel_mim_solvers-0.0.4-0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 771341fe09c591797d0994151ef923875cc5fde4db4ee2a372ab65ce4139ee8b
MD5 5cb221c999c7ef6e02870fe32ea743dd
BLAKE2b-256 017bcdf5c79bb7bba0f3d07550598a989336a47d444f117b3c29335a9b2a1de8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page