Skip to main content

Building TOUGH2/Waiwera models from layers of conceptual models

Project description

Install

pip install -U cmflow

Install Dependency

On Windows, Shapely and Rtree are easier to be installed by using Christoph Gohlke's non-official build:

descartes can be installed on all platform by:

pip install descartes

On Linux (Ubuntu shown here) these can be installed via apt-get:

sudo apt-get install -y python-shapely
sudo apt-get install -y python-rtree
sudo apt-get install -y python-descartes

Example

Creates BMStats that can be used later, from Leapfrog Geology:

# (ONLY ONCE) geo used to get geology from Leapfrog geological model
cmgeo = mulgrid('g_very_fine.dat')

# CSV file created by Leapfrog using cmgeo above
leapfrog = LeapfrogGM()
leapfrog.import_leapfrog_csv('grid_gtmp_ay2017_03_6_fit.csv')

cm_geology = CM_Blocky(cmgeo, leapfrog)

# whatever active model we are working on
bmgeo = mulgrid('gwaixx_yy.dat')

bms_geology = cm_geology.populate_model(bm_geo)
bms_geology.save('a.json')

A BMStats object can be reused (very fast) to eg.

bms_geology = BMStats('a.json')

# get a cell's stats
cs = bms_geology.cellstats['abc12']

# rock that occupies most in cell 'abc12'
rock_name = bms_geology.zones[np.argmax(cs)]

# how many rock in cell 'abc12'
n_rock = len(np.nonzero(cs))

# list all rocks in cell 'abc12'
rocks = [bm_geology.zones[i] for i in np.nonzero(cs)]

BMStats

This is the object that we keep for later use. It is associated to a certain "geometry" file. So each cell has information on zones. Usually this is generated by cm.populate_model(), which can be expensive.

  • ? should I call it CMStats?
  • ? TODO, .cellstats access by cell index
  • ? TODO, .

Base Model Stats, mainly numpy arrays with rows corresponding to mulgrid blocks, and columns corresponding to zones. Each is a value, usually between 0.0 and 1.0. Often 1.0 is indicating that particular block is fully within the zone.

.stats numpy array (n,m), n = num of model blocks, m = num of zones .zones list of zone names (str) .zonestats dict of stats column by zone names .cellstats dict of stats row by block name

6 elements, 3 zones
 A    B    C
0.0, 0.7, 0.3,  -> row sum to 1.0, element 0, 0.7 rock B, 0.3 rock C 
1.0, 0.0, 0.0, 
1.0, 0.0, 0.0, 
0.0, 0.5, 0.5, 
0.1, 0.2, 0.7, 
0.0, 1.0, 0.0, 
(this is only one way of using it, such as a rocktype)

.stats, numpy array (n * m), n number of geometry cells, m number of zones .zones, a list of zone name, eg. geology rock names, fault names etc .zonestats, a dict keyed by zone name, an array of size number of cells, each cell is between .cellstats, a dict of stats by cell name

.save() .load() .add_stats() add another bmstat, merge stats .add_cm() calls cm.populate_model, and merge stats

CM

CM_Blocky

CM_Prism

CM_Faults

These are the objects that can be created in order to create the final BMStats objects. The common method .populate_model(bm_geo) is called to create BMStats objects. It means the conceptual model is "applied" onto the bm_geo.

  • TODO, .populate_model() should return BMStats instead
  • ? TODO, .populate_model() should be called something else?

.populate_model(bm_geo) takes a target geometry, and return/creates BMStats

LeapfrogGM

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cmflow-0.1.1.dev40.tar.gz (500.2 kB view details)

Uploaded Source

Built Distribution

cmflow-0.1.1.dev40-py2-none-any.whl (501.0 kB view details)

Uploaded Python 2

File details

Details for the file cmflow-0.1.1.dev40.tar.gz.

File metadata

  • Download URL: cmflow-0.1.1.dev40.tar.gz
  • Upload date:
  • Size: 500.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/2.7.12

File hashes

Hashes for cmflow-0.1.1.dev40.tar.gz
Algorithm Hash digest
SHA256 0758b0aad263268a92d84be75cebaaeed31f4fbf327e80a37a4bed6cc2456647
MD5 773002435e7dcc8ffd15eb1d31b31591
BLAKE2b-256 975843cff819b61e3c6cec88047e1615cfd6552f17607a5e905f8d42a91d195d

See more details on using hashes here.

File details

Details for the file cmflow-0.1.1.dev40-py2-none-any.whl.

File metadata

  • Download URL: cmflow-0.1.1.dev40-py2-none-any.whl
  • Upload date:
  • Size: 501.0 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/2.7.12

File hashes

Hashes for cmflow-0.1.1.dev40-py2-none-any.whl
Algorithm Hash digest
SHA256 e770b7f5a3a26dee6227759b5efd45a70156d2fd41bbc47cb127d14baf0c5ab3
MD5 1358b2ca07e2ab1623365c59bb377931
BLAKE2b-256 3edf897c25e1278b6309f19a0aaa8bb355bcf8883675fd0da5c1470a3249a0a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page