Skip to main content

Package for handling CMIP6 data

Project description

https://img.shields.io/travis/TaufiqHassan/cmpdata.svg https://img.shields.io/pypi/v/cmpdata.svg https://zenodo.org/badge/295042856.svg

cmpdata package can handle and analyze raw CMIP6 data.

Features

  • Handle raw CMIP6 data

  • Analyze any specific models/experiments/variables

  • Perform regridding for model ensemble means

  • Data preprocessing

  • Statistical analysis

Installation

Use the YAML file provided to create a virtual conda enviroment (cmpdata)

conda env create -f environment.yml

And then activate cmpdata to use cmpdata

conda activate cmpdata

Supports both Mac and Linux. Windows users can use Windows Subsystem.

Usage

cmpdata can be used to handle and analyze raw CMIP6 data. A lot of the options available in acccmip6 is available in cmpdata, especially for selecting models, experiments and variables. cmpdata also tries to be a good command-line interface (CLI). Run cmpdata -h to see a help message with all the arguments you can pass.

python cmpdata.py -h

usage: cmpdata.py [-h] -o {info,rm,mm,stats,ts} [-dir DIR] [-m M] [-e E] [-v V] [-r R] [-out OUT] [-f F] [-init INIT] [-end END] [-t] [-z] [-s S] [-mm]
[-std] [-clim] [-anom] [-manom] [-trend] [-aggr] [-freq FREQ] [-reg REG] [-rm] [-a] [-curve] [-w] [-ci CI] [-regrid]

options:
-h, --help            show this help message and exit
-o {info,rm,mm,stats,ts}, --output-options {info,rm,mm,stats,ts}
        Select an output option
-dir DIR              Select directory.
-m M                  Model names
-e E                  Experiment names
-v V                  Variable names
-r R                  Realization
-out OUT              Output file name
-f F                  Input filenames for stats
-init INIT            Initial year
-end END              Ending year
-t                    Temporal mean option
-z                    Zonal mean option
-s S                  Seasonal mean option
-mm                   Calculate model ensemble mean
-std                  Calculate model std
-clim                 Calculate monthly climatology
-anom                 Calculate monthly anomaly
-manom                Calculate model anomaly
-trend                Calculate variable grid-by-grid trends
-aggr                 Calculate model aggreement
-freq FREQ            Temporal mean frequency: annual/daily/monthly
-reg REG              Select region for timeseries output
-rm                   Use the realization means
-a                    Use cell areas for spatial mean calculations
-curve                Regridding to curvilinear grids
-w                    All model means as ens dim (used by -std, -mm, -aggr stats options)
-ci CI                confidence interval used in -trend and -aggr options
-regrid               regridding on/off

License

This code is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cmpdata-2.0.1.tar.gz (13.0 kB view details)

Uploaded Source

Built Distribution

cmpdata-2.0.1-py3-none-any.whl (14.1 kB view details)

Uploaded Python 3

File details

Details for the file cmpdata-2.0.1.tar.gz.

File metadata

  • Download URL: cmpdata-2.0.1.tar.gz
  • Upload date:
  • Size: 13.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.13

File hashes

Hashes for cmpdata-2.0.1.tar.gz
Algorithm Hash digest
SHA256 d4edc1c80e60f29c666f742d5bfa63f587397bea5dd88593b870120ab0758ccd
MD5 89111c31f3cc77fda9d8b5811b1b6cc7
BLAKE2b-256 abaf7fbe66f45a12ad962b94e8785de7aee69b084c5a1b801beaae133638901f

See more details on using hashes here.

File details

Details for the file cmpdata-2.0.1-py3-none-any.whl.

File metadata

  • Download URL: cmpdata-2.0.1-py3-none-any.whl
  • Upload date:
  • Size: 14.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.13

File hashes

Hashes for cmpdata-2.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3eb70d216bbadac951a29dbf9618a3966e8160d3d805ce7f232a44238442746f
MD5 920e2d713d7c5a39197557096802d363
BLAKE2b-256 8db62bdfe916ae4bfc4ae2549187e59bfc4167cf4ad9619ef985a94d0a266eac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page