Skip to main content

A python package to draw china maps more easily

Project description

cnmaps

这一个可以让中国地图画起来更丝滑的python包(基于matplotlib和cartopy)

安装

你可以使用pip进行安装:$ pip install cnmaps

使用

快速开始

用最简单直接的方式,来绘制你的第一张中国地图。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())

draw_map(get_map('中国'), color='k') 
# 注意,该版本的中国是简化版的,仅包括了主要陆地,如果想用完整版,请使用 get_map('中国2'),但是完整版中国地图的绘制会很慢。

plt.show()

china-line

绘制南海

现在我们可以把南海九段线加上。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
draw_map(get_map('中国'), color='k')
draw_map(get_map('南海'), color='k')

plt.show()

china-line-with-south-sea

绘制各省地图

cnmaps还可以绘制各省(特区/直辖市)的地图

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
draw_map(get_map('中国'), color='k')
draw_map(get_map('南海'), color='k')
draw_map(get_map('河南'), color='b')

plt.show()

china-line-with-south-sea

合并省界

cnmaps可以将多个省(特区/直辖市)合并起来,例如我们可以用很简单的方式来可以绘制一张京津冀的轮廓图。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map

jingjinji = get_map('北京') + get_map('天津') + get_map('河北')

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
draw_map(jingjinji, color='k')

plt.show()

京津冀

绘制青藏高原

cnmaps还内置了青藏高原的边界。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
draw_map(get_map('青藏高原', map_set='geography'), color='k')

plt.show()

青藏高原

根据边界裁减填色等值线图

cnmaps可以利用地图边界对等值线图进行裁减,只需要一个clip_contours_by_map函数即可。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map, clip_contours_by_map
from cnmaps.data import load_dem

lons, lats, dem = load_dem()
fig = plt.figure(figsize=(10,10))

tp = get_map('青藏高原', map_set='geography')

ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
cs = ax.contourf(lons, lats, dem, cmap=plt.cm.terrain)
clip_contours_by_map(cs, tp)
draw_map(tp, color='k')

青藏高原剪切

调整图片边界位置

我们可以利用get_extent方法获取不同缩放等级的边界,例如下图,我们用12个不同等级的缩放来绘制青藏高原的海拔高度图

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map, clip_contours_by_map
from cnmaps.data import load_dem

lons, lats, dem = load_dem()
fig = plt.figure(figsize=(12,6))
fig.tight_layout()

tp = get_map('青藏高原', map_set='geography')

for i in range(12):
    ax = fig.add_subplot(3,4,i+1, projection=ccrs.PlateCarree())
    cs = ax.contourf(lons, lats, dem, cmap=plt.cm.terrain)
    clip_contours_by_map(cs, tp)
    draw_map(tp, color='k')
    ax.set_extent(tp.get_extent(buffer=i*2))
    plt.title(f'buffer={i*2}')

plt.show()

青藏高原剪切

剪切等值线图

除了填色等值线,非填色的等值线也可以直接用clip_contours_by_map进行剪切。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map, clip_contours_by_map
from cnmaps.data import load_dem

lons, lats, dem = load_dem()
fig = plt.figure(figsize=(18, 9))
fig.tight_layout()

tp = get_map('青藏高原', map_set='geography')

ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
cs = ax.contour(lons, lats, dem, cmap=plt.cm.terrain)
clip_contours_by_map(cs, tp)
draw_map(tp, color='k')
ax.set_extent(tp.get_extent(buffer=3))

plt.show()

非填色等值线

对label的裁减

cnmaps的clip_clabels_by_map函数可以对超出边界的等值线标签进行裁减

注意!由于Cartopy自身的设计缺陷,在0.18.0版本中,Cartopy重写的clabel方法不返回Label Text对象,因此在该版本中clip_clabels_by_map函数无法生效,在0.19.0中修复了这个bug,所以请尽量使用0.19.0及以上版本。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map, clip_contours_by_map
from cnmaps.data import load_dem

lons, lats, dem = load_dem()
fig = plt.figure(figsize=(18, 9))
fig.tight_layout()

tp = get_map('青藏高原', map_set='geography')

ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
cs = ax.contour(lons, lats, dem, cmap=plt.cm.terrain)
clip_contours_by_map(cs, tp)

cb = ax.clabel(cs, colors='r')
clip_clabels_by_map(cb, tp)

draw_map(tp, color='k')
ax.set_extent(tp.get_extent(buffer=3))

plt.show()

等值线标签

变换投影

上述的功能在其他投影下也都适用,比如我们用正交投影画一个剪切中国区域的海拔高度图。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map, clip_contours_by_map
from cnmaps.data import load_dem

lons, lats, dem = load_dem()
fig = plt.figure(figsize=(18, 9))
fig.tight_layout()

china = get_map('中国')

ax = fig.add_subplot(111, projection=ccrs.Orthographic(central_longitude=100))
cs = ax.contourf(lons, lats, dem, cmap=plt.cm.terrain, transform=ccrs.PlateCarree())
clip_contours_by_map(cs, china)

draw_map(china, color='k')
ax.set_extent(china.get_extent(buffer=3))
ax.set_global()
ax.coastlines()

plt.show()

中国地形正交投影

再试一试其他投影

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map, clip_contours_by_map
from cnmaps.data import load_dem

lons, lats, dem = load_dem()

PROJECTIONS = [
    ('Mercator', ccrs.Mercator(central_longitude=100)),
    ('Mollweide', ccrs.Mollweide(central_longitude=100)),
    ('Orthographic', ccrs.Orthographic(central_longitude=100)),
    ('Robinson', ccrs.Robinson(central_longitude=100))
]

fig = plt.figure(figsize=(16, 12))
fig.tight_layout()

china = get_map('中国')

for i, prj in enumerate(PROJECTIONS):
    ax = fig.add_subplot(2,2,i+1, projection=prj[1])
    cs = ax.contourf(lons, lats, dem, cmap=plt.cm.terrain, transform=ccrs.PlateCarree())
    clip_contours_by_map(cs, china)

    draw_map(china, color='k')
    ax.set_extent(china.get_extent(buffer=3))
    ax.set_global()
    ax.coastlines()
    plt.title(prj[0])

plt.show()

多投影地图

引用

本项目适用的地图边界的数据源包括:

  1. 谢栋灿. 高德行政区边界获取与整理(shp格式)[EB/OL]. [2017.11.05]. http://i.xdc.at/2017/11/05/amap-district-to-shapefile/
  2. 张镱锂, 李炳元, 郑度. 青藏高原范围与界线地理信息系统数据[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2014. https://doi.org/10.3974/geodb.2014.01.12.V1.

海拔高度地形数据来自SRTM数字高程模型,并对原始数据进行了稀释。

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cnmaps-0.1.8.tar.gz (2.3 MB view details)

Uploaded Source

Built Distribution

cnmaps-0.1.8-py3.6.egg (2.3 MB view details)

Uploaded Source

File details

Details for the file cnmaps-0.1.8.tar.gz.

File metadata

  • Download URL: cnmaps-0.1.8.tar.gz
  • Upload date:
  • Size: 2.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13

File hashes

Hashes for cnmaps-0.1.8.tar.gz
Algorithm Hash digest
SHA256 86dca1c048a8e9d098d37afa24ba2370edd9d30db1eb4d0df3d49b2084a9def4
MD5 ad0ebcccb9dec1979047d36bbd37dad6
BLAKE2b-256 0bb5004154d0da5f105804251440e46f198fe8766f0f6127099de69fd6ae1653

See more details on using hashes here.

File details

Details for the file cnmaps-0.1.8-py3.6.egg.

File metadata

  • Download URL: cnmaps-0.1.8-py3.6.egg
  • Upload date:
  • Size: 2.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13

File hashes

Hashes for cnmaps-0.1.8-py3.6.egg
Algorithm Hash digest
SHA256 515117e2630f341bbdf2b89a945edcf9ce8305496d342341d9f885dec68c41c2
MD5 28d3414b72d47120f6f0761125e7ab1c
BLAKE2b-256 bc9617785b3ccacbf6f74d2d63a2df6b72f4667e0fb13eceb89f4887facd7fbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page