A python package to draw china maps more easily
Project description
cnmaps
这一个可以让中国地图画起来更丝滑的python包(基于matplotlib和cartopy)
安装
你可以使用pip进行安装:$ pip install cnmaps
使用
快速开始
用最简单直接的方式,来绘制你的第一张中国地图。
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
draw_map(get_map('中国'), color='k')
# 注意,该版本的中国是简化版的,仅包括了主要陆地,如果想用完整版,请使用 get_map('中国2'),但是完整版中国地图的绘制会很慢。
plt.show()
绘制南海
现在我们可以把南海九段线加上。
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
draw_map(get_map('中国'), color='k')
draw_map(get_map('南海'), color='k')
plt.show()
绘制各省地图
cnmaps还可以绘制各省(特区/直辖市)的地图
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
draw_map(get_map('中国'), color='k')
draw_map(get_map('南海'), color='k')
draw_map(get_map('河南'), color='b')
plt.show()
合并省界
cnmaps可以将多个省(特区/直辖市)合并起来,例如我们可以用很简单的方式来可以绘制一张京津冀的轮廓图。
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map
jingjinji = get_map('北京') + get_map('天津') + get_map('河北')
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
draw_map(jingjinji, color='k')
plt.show()
绘制青藏高原
cnmaps还内置了青藏高原的边界。
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
draw_map(get_map('青藏高原', map_set='geography'), color='k')
plt.show()
根据边界裁减填色等值线图
cnmaps可以利用地图边界对等值线图进行裁减,只需要一个clip_contours_by_map
函数即可。
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map, clip_contours_by_map
from cnmaps.data import load_dem
lons, lats, dem = load_dem()
fig = plt.figure(figsize=(10,10))
tp = get_map('青藏高原', map_set='geography')
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
cs = ax.contourf(lons, lats, dem, cmap=plt.cm.terrain)
clip_contours_by_map(cs, tp)
draw_map(tp, color='k')
调整图片边界位置
我们可以利用get_extent
方法获取不同缩放等级的边界,例如下图,我们用12个不同等级的缩放来绘制青藏高原的海拔高度图
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map, clip_contours_by_map
from cnmaps.data import load_dem
lons, lats, dem = load_dem()
fig = plt.figure(figsize=(12,6))
fig.tight_layout()
tp = get_map('青藏高原', map_set='geography')
for i in range(12):
ax = fig.add_subplot(3,4,i+1, projection=ccrs.PlateCarree())
cs = ax.contourf(lons, lats, dem, cmap=plt.cm.terrain)
clip_contours_by_map(cs, tp)
draw_map(tp, color='k')
ax.set_extent(tp.get_extent(buffer=i*2))
plt.title(f'buffer={i*2}')
plt.show()
剪切等值线图
除了填色等值线,非填色的等值线也可以直接用clip_contours_by_map
进行剪切。
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map, clip_contours_by_map
from cnmaps.data import load_dem
lons, lats, dem = load_dem()
fig = plt.figure(figsize=(18, 9))
fig.tight_layout()
tp = get_map('青藏高原', map_set='geography')
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
cs = ax.contour(lons, lats, dem, cmap=plt.cm.terrain)
clip_contours_by_map(cs, tp)
draw_map(tp, color='k')
ax.set_extent(tp.get_extent(buffer=3))
plt.show()
对label的裁减
cnmaps的clip_clabels_by_map
函数可以对超出边界的等值线标签进行裁减
注意!由于Cartopy自身的设计缺陷,在0.18.0
版本中,Cartopy重写的clabel
方法不返回Label Text对象,因此在该版本中clip_clabels_by_map
函数无法生效,在0.19.0
中修复了这个bug,所以请尽量使用0.19.0
及以上版本。
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map, clip_contours_by_map
from cnmaps.data import load_dem
lons, lats, dem = load_dem()
fig = plt.figure(figsize=(18, 9))
fig.tight_layout()
tp = get_map('青藏高原', map_set='geography')
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
cs = ax.contour(lons, lats, dem, cmap=plt.cm.terrain)
clip_contours_by_map(cs, tp)
cb = ax.clabel(cs, colors='r')
clip_clabels_by_map(cb, tp)
draw_map(tp, color='k')
ax.set_extent(tp.get_extent(buffer=3))
plt.show()
变换投影
上述的功能在其他投影下也都适用,比如我们用正交投影画一个剪切中国区域的海拔高度图。
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map, clip_contours_by_map
from cnmaps.data import load_dem
lons, lats, dem = load_dem()
fig = plt.figure(figsize=(18, 9))
fig.tight_layout()
china = get_map('中国')
ax = fig.add_subplot(111, projection=ccrs.Orthographic(central_longitude=100))
cs = ax.contourf(lons, lats, dem, cmap=plt.cm.terrain, transform=ccrs.PlateCarree())
clip_contours_by_map(cs, china)
draw_map(china, color='k')
ax.set_extent(china.get_extent(buffer=3))
ax.set_global()
ax.coastlines()
plt.show()
再试一试其他投影
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_map, draw_map, clip_contours_by_map
from cnmaps.data import load_dem
lons, lats, dem = load_dem()
PROJECTIONS = [
('Mercator', ccrs.Mercator(central_longitude=100)),
('Mollweide', ccrs.Mollweide(central_longitude=100)),
('Orthographic', ccrs.Orthographic(central_longitude=100)),
('Robinson', ccrs.Robinson(central_longitude=100))
]
fig = plt.figure(figsize=(16, 12))
fig.tight_layout()
china = get_map('中国')
for i, prj in enumerate(PROJECTIONS):
ax = fig.add_subplot(2,2,i+1, projection=prj[1])
cs = ax.contourf(lons, lats, dem, cmap=plt.cm.terrain, transform=ccrs.PlateCarree())
clip_contours_by_map(cs, china)
draw_map(china, color='k')
ax.set_extent(china.get_extent(buffer=3))
ax.set_global()
ax.coastlines()
plt.title(prj[0])
plt.show()
引用
本项目适用的地图边界的数据源包括:
- 谢栋灿. 高德行政区边界获取与整理(shp格式)[EB/OL]. [2017.11.05]. http://i.xdc.at/2017/11/05/amap-district-to-shapefile/
- 张镱锂, 李炳元, 郑度. 青藏高原范围与界线地理信息系统数据[J/DB/OL]. 全球变化数据仓储电子杂志(中英文), 2014. https://doi.org/10.3974/geodb.2014.01.12.V1.
海拔高度地形数据来自SRTM数字高程模型,并对原始数据进行了稀释。
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cnmaps-0.1.8.tar.gz
.
File metadata
- Download URL: cnmaps-0.1.8.tar.gz
- Upload date:
- Size: 2.3 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86dca1c048a8e9d098d37afa24ba2370edd9d30db1eb4d0df3d49b2084a9def4 |
|
MD5 | ad0ebcccb9dec1979047d36bbd37dad6 |
|
BLAKE2b-256 | 0bb5004154d0da5f105804251440e46f198fe8766f0f6127099de69fd6ae1653 |
File details
Details for the file cnmaps-0.1.8-py3.6.egg
.
File metadata
- Download URL: cnmaps-0.1.8-py3.6.egg
- Upload date:
- Size: 2.3 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 515117e2630f341bbdf2b89a945edcf9ce8305496d342341d9f885dec68c41c2 |
|
MD5 | 28d3414b72d47120f6f0761125e7ab1c |
|
BLAKE2b-256 | bc9617785b3ccacbf6f74d2d63a2df6b72f4667e0fb13eceb89f4887facd7fbe |