Skip to main content

A python package to draw china maps more easily

Project description

cnmaps

Pytest Pypi publish Anaconda Install with conda Conda downloads PyPI version Pypi Downloads Documentation Status contributions welcome style

cnmaps是一个可以让中国地图画起来更丝滑的地图类python扩展包

安装

安装cnmaps建议使用Python的解释器在3.8版本及以上。

使用conda安装

cnmaps最简单的安装方法是使用conda安装: $ conda install -c conda-forge cnmaps

使用pip安装

若要使用pip安装,则需要手动安装一些依赖:

  • cartopy: $ conda install -c conda-forge "cartopy>=0.20.0"
  • fiona: $ conda install -c conda-forge "fiona>=1.8.21"

在完成上述依赖的安装以后,你可以使用pip来安装cnmaps: $ pip install -U cnmaps

快速开始

绘制国界

用最简单直接的方式,来绘制你的第一张中国地图。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_adm_maps, draw_maps

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())

draw_maps(get_adm_maps(level='国')) 
plt.show()

country-level

绘制省界

cnmaps还可以绘制各省(特区/直辖市)的地图

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_adm_maps, draw_maps

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())

draw_maps(get_adm_maps(level='省'), linewidth=0.8, color='r') 

plt.show()

province-level

绘制市界

cnmaps可以绘制市级的行政区地图。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_adm_maps, draw_maps

fig = plt.figure(figsize=(15,15))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())

draw_maps(get_adm_maps(level='市'), linewidth=0.5, color='g') 

plt.show()

city-level

绘制区县界

cnmaps可以绘制区县级的行政区地图。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_adm_maps, draw_maps

fig = plt.figure(figsize=(20,20))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())

draw_maps(get_adm_maps(level='区县'), linewidth=0.8, color='r') 

plt.show()

district-level

Logo

本项目的Logo地图是如何绘制的?请执行下面的代码。

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_adm_maps

fig = plt.figure(figsize=(5,5))
proj = ccrs.Orthographic(central_longitude=100.0, central_latitude=30)
ax = fig.add_subplot(111, projection=proj)

ax.stock_img()
china, sourth_sea = get_adm_maps(level='国', only_polygon=True)

ax.set_global()
ax.add_geometries(china, crs=ccrs.PlateCarree(), edgecolor='r', facecolor='r')
ax.add_geometries(sourth_sea, crs=ccrs.PlateCarree(), edgecolor='r')
ax.outline_patch.set_edgecolor('white')

plt.savefig('../static/images/logo-base.png', bbox_inches='tight')

logo-base

使用指南

针对本项目更多的使用方法,我们还有一份更详细的文档:cnmaps使用指南

引用

本项目适用的地图边界的数据源包括:

  1. GaryBikini/ChinaAdminDivisonSHP: v2.0, 2021, DOI: 10.5281/zenodo.4167299

海拔高度地形数据来自ASTER数字高程模型,并对原始数据进行了稀释。

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cnmaps-1.1.0.tar.gz (50.6 MB view details)

Uploaded Source

Built Distribution

cnmaps-1.1.0-py3-none-any.whl (52.0 MB view details)

Uploaded Python 3

File details

Details for the file cnmaps-1.1.0.tar.gz.

File metadata

  • Download URL: cnmaps-1.1.0.tar.gz
  • Upload date:
  • Size: 50.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for cnmaps-1.1.0.tar.gz
Algorithm Hash digest
SHA256 bd8c837507536139b95c0bcfeed6e71f92273ad5eefc24ecd1b681c0e53fd89f
MD5 af64e7d29b7ba25ba9fb9aaad3c7d5b6
BLAKE2b-256 79c00b53550c234e576b8682bf913ce8cff1714ba30ed8ba00778b20d048d734

See more details on using hashes here.

Provenance

File details

Details for the file cnmaps-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: cnmaps-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 52.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for cnmaps-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d066493814c59f438978becab7f118af00998af6b1e92607827e7a351160cc97
MD5 9a793a058d985a3411b9421b4f33d4c1
BLAKE2b-256 2e691e9f2445692e448f64d48698a0e4021da12aa4d48beadd04d5d14156172f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page