Skip to main content

This is a tool for converting chinese time phrases into time spans.

Project description

CNSeq2TimeSpan

此项目基于zhanzecheng的Time_NLP,并增添了时间域的输出。

Install

pip install CNSeq2TimeSpan

Examples

from CNSeq2TimeSpan.TimeNormalizer import TimeNormalizer
tn = TimeNormalizer()

res = tn.parse(target=u'今年的财务报表交了吗')
print(res)

res = tn.parse(target=u'昨天刚写完,明天早上就交')
print(res)

返回结果

{
	'timebase': '2019-11-21-15-3-58',
	'word': ['今年'],
	'type': 'timespan',
	'timespan': [
		['2019-01-01 00:00:00', '2019-12-31 23:59:59']
	]
}

{
	'timebase': '2019-11-21-8-3-58',
	'word': ['昨天', '明天早上'],
	'type': 'timespan',
	'timespan': [
		['2019-11-20 00:00:00', '2019-11-20 23:59:59'],
		['2019-11-21 06:00:00', '2019-11-21 09:00:00']
	]
}

简介

Time-NLP的python3版本
python 版本https://github.com/sunfiyes/Time-NLPY
Java 版本https://github.com/shinyke/Time-NLP

使用方式

demo:python3 Test.py

优化说明

问题 以前版本 现在版本
无法解析下下周末 "timestamp": "2018-04-01 00:00:00" "timestamp": "2018-04-08 00:00:00"
无法解析 3月4 "2018-03-01" "2018-03-04"
无法解析 初一 初二 cannot parse "2018-02-16"
晚上8点到上午10点之间 无法解析上午 ["2018-03-16 20:00:00", "2018-03-16 22:00:00"] ["2018-03-16 20:00:00", "2018-03-16 10:00:00"]
3月21号  错误解析成2019年     "2019-03-21" "2018-03-21" 

感谢@tianyuningmou 目前增加了对24节气的支持

temp = ['今年春分']
"timestamp" : "2020-03-20 00:00:00"

TODO

问题 现在版本 正确
晚上8点到上午10点之间 ["2018-03-16 20:00:00", "2018-03-16 22:00:00"] ["2018-03-16 20:00:00", "2018-03-17 10:00:00"]"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

CNSeq2TimeSpan-0.1.9.tar.gz (26.1 kB view details)

Uploaded Source

Built Distribution

CNSeq2TimeSpan-0.1.9-py3-none-any.whl (30.2 kB view details)

Uploaded Python 3

File details

Details for the file CNSeq2TimeSpan-0.1.9.tar.gz.

File metadata

  • Download URL: CNSeq2TimeSpan-0.1.9.tar.gz
  • Upload date:
  • Size: 26.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for CNSeq2TimeSpan-0.1.9.tar.gz
Algorithm Hash digest
SHA256 a1f09f5a988376bda4be4ad28f6fe6ac3238fc06f2a0a0d539d9979d3fd99ffc
MD5 a4027c139a0f5e8390fdab3ffd24d0f5
BLAKE2b-256 48ca8c52c31807f41cddf7773902de7e9d56218f7841ed0cab3eed7cc0f42643

See more details on using hashes here.

File details

Details for the file CNSeq2TimeSpan-0.1.9-py3-none-any.whl.

File metadata

  • Download URL: CNSeq2TimeSpan-0.1.9-py3-none-any.whl
  • Upload date:
  • Size: 30.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for CNSeq2TimeSpan-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 c61255016b0e7fd540df8f458595b910848288a6ca5fd1bece377d0f67afad3f
MD5 e2c11a723e7ac4d93fbf43a30fd556bf
BLAKE2b-256 f9830de99173d3824a7ae0d744721514238f505498428f10354c09eec39284e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page