Skip to main content

Python client for coach

Project description

Coach Python SDK

Coach is an end-to-end Image Recognition platform, we provide the tooling to do effective data collection, training, and on-device parsing of Image Recognition models.

See https://coach.lkuich.com for more information!

Installing

Install and update using pip:

pip install coach-ml

Usage

Coach can be initialized 2 different ways. If you are only using the offline model parsing capabilities and already have a model package on disk, you can initialize like so:

coach = CoachClient()

# We already had the `flowers` model on disk, no need to authenticate:
result = coach.get_model('flowers').predict('rose.jpg')

However, in order to download your trained models, you must authenticate with your API key:

coach = CoachClient().login('myapikey')

# Now that we're authenticated, we can cache our models for future use:
coach.cache_model('flowers')

# Evaluate with our cached model:
result = coach.get_model('flowers').predict('rose.jpg')

API Breakdown

CoachClient

__init__(is_debug=False)
Optional is_debug, if True, additional logs will be displayed

login(apiKey) -> CoachClient
Authenticates with Coach service and allows for model caching. Accepts API Key as its only parameter. Returns its own instance.

cache_model(model_name, path='.', skip_match=False, model_type='frozen') Downloads model from Coach service to disk. Specify the name of the model, and the path to store it. This will create a new directory in the specified path and store any model related documents there. By default, if a model already exists with the same version, in the same path, caching will be skipped. Set skip_match to False to override this behaviour. model_type can be one of: frozen, unity, mobile, and can be useful if you're interested in caching a specific version of your model.

get_model(path='.') -> CoachModel Loads model into memory. Specify the path of the cached models directory. Returns a CoachModel

get_model_remote(model_name, path='.') -> CoachModel Downloads and loads model into memory. Specify the path of the cached models directory. Returns a CoachModel

CoachModel

__init__(graph, labels, base_module)
Initializes a new instance of CoachModel, accepts a loaded tf.Graph(), array of labels, and the base_module the graph was trained off of.

predict(image, input_name="input", output_name="output") -> dict
Specify the directory of an image file or the image as a byte array. Parses the specified image into memory and runs it through the loaded model. Returns a dict of its predictions in order of confidence. If you have a pretrained frozen graph with different Tensor input/output names, you can specify them with input_name and output_name respectfully.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coach-ml-0.22.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

coach_ml-0.22-py3-none-any.whl (5.8 kB view details)

Uploaded Python 3

File details

Details for the file coach-ml-0.22.tar.gz.

File metadata

  • Download URL: coach-ml-0.22.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.9

File hashes

Hashes for coach-ml-0.22.tar.gz
Algorithm Hash digest
SHA256 9a8a213e81265629872b5d4788966c63a32a0e1027fbdf1c950c9ccdbcc7af99
MD5 81d50e7b5c280c6737a80fe06cd0fe5a
BLAKE2b-256 f02c9c9f3d6ffdd0ed472667d63836fe6a08c09f18014c33df91d66020fb52eb

See more details on using hashes here.

File details

Details for the file coach_ml-0.22-py3-none-any.whl.

File metadata

  • Download URL: coach_ml-0.22-py3-none-any.whl
  • Upload date:
  • Size: 5.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.6.9

File hashes

Hashes for coach_ml-0.22-py3-none-any.whl
Algorithm Hash digest
SHA256 8b0d7c59268642f6820c676838ad5a1164ff476f689bc5ecb18cc937e349b503
MD5 acad54331f2c513fd6167a469b8b459f
BLAKE2b-256 d5ed99d2ff865359c5a98cb7a4ba2f862865c9b5f54b7dd3e0addf780ee7b632

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page