Corpus of Annual Reports in Japan
Project description
CoARiJ: Corpus of Annual Reports in Japan
We organized Japanese financial reports to encourage applying NLP techniques to financial analytics.
Dataset
The corpora are separated to each financial years.
master version.
fiscal_year | Raw file version (F) | Text extracted version (E) |
---|---|---|
2014 | .zip (9.3GB) | .zip (269.9MB) |
2015 | .zip (9.8GB) | .zip (291.1MB) |
2016 | .zip (10.2GB) | .zip (334.7MB) |
2017 | .zip (9.1GB) | .zip (309.4MB) |
2018 | .zip (10.5GB) | .zip (260.9MB) |
- financial data is from 決算短信情報.
- We use non-cosolidated data if it exist.
- stock data is from 月間相場表(内国株式).
close
is fiscal period end andopen
is 1 year before of it.
Past release
Statistics
fiscal_year | number_of_reports | has_csr_reports | has_financial_data | has_stock_data |
---|---|---|---|---|
2014 | 3,724 | 92 | 3,583 | 3,595 |
2015 | 3,870 | 96 | 3,725 | 3,751 |
2016 | 4,066 | 97 | 3,924 | 3,941 |
2017 | 3,578 | 89 | 3,441 | 3,472 |
2018 | 3,513 | 70 | 2,893 | 3,413 |
File structure
Raw file version (--kind F
)
The structure of dataset is following.
chakki_esg_financial_{year}.zip
└──{year}
├── documents.csv
└── docs/
docs
includes XBRL and PDF file.
- XBRL file of annual reports (files are retrieved from EDINET).
- PDF file of CSR reports (additional content).
documents.csv
has metadata like following. Please refer the detail at Wiki.
- edinet_code:
E0000X
- filer_name:
XXX株式会社
- fiscal_year:
201X
- fiscal_period:
FY
- doc_path:
docs/S000000X.xbrl
- csr_path:
docs/E0000X_201X_JP_36.pdf
Text extracted version (--kind E
)
Text extracted version includes txt
files that match each part of an annual report.
The extracted parts are defined at xbrr
.
chakki_esg_financial_{year}_extracted.zip
└──{year}
├── documents.csv
└── docs/
Tool
You can download dataset by command line tool.
pip install coarij
Please refer the usage by --
(using fire).
coarij --
Example command.
# Download raw file version dataset of 2014.
coarij download --kind F --year 2014
# Extract business.overview_of_result part of TIS.Inc (sec code=3626).
coarij extract business.overview_of_result --sec_code 3626
# Tokenize text by Janome (`janome` or `sudachi` is supported).
pip install janome
coarij tokenize --tokenizer janome
# Show tokenized result (words are separated by \t).
head -n 5 data/processed/2014/docs/S100552V_business_overview_of_result_tokenized.txt
1 【 業績 等 の 概要 】
( 1 ) 業績
当 連結 会計 年度 における 我が国 経済 は 、 消費 税率 引上げ に 伴う 駆け込み 需要 の 反動 や 海外 景気 動向 に対する 先行き 懸念 等 から 弱い 動き も 見 られ まし た が 、 企業 収益 の 改善 等 により 全体 ...
If you want to download latest dataset, please specify --version master
when download the data.
- About the parsable part, please refer the
xbrr
.
You can use Ledger
to select your necessary file from overall CoARiJ dataset.
from coarij.storage import Storage
storage = Storage("your/data/directory")
ledger = storage.get_ledger()
collected = ledger.collect(edinet_code="E00021")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file coarij-0.2.8.tar.gz
.
File metadata
- Download URL: coarij-0.2.8.tar.gz
- Upload date:
- Size: 11.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4fd79e709681c793fc37e0cbaf89320b34cc76f1ebc752dbc342309678e6d5f |
|
MD5 | 893cf6d4801c133105713830d33ecc36 |
|
BLAKE2b-256 | 40d0519b549f047c9c67425c539c33d5a67bae752b79c0eb760a1f37fd4387e7 |