COCO dataset library.
Project description
coco-lib
COCO dataset library. Provides serializable native Python bindings for several COCO dataset formats.
Supported bindings and their corresponding modules:
- Object Detection:
objectdetection
- Keypoint Detection:
keypointdetection
- Panoptic Segmentation:
panopticsegmentation
- Image Captioning:
imagecaptioning
Installation
coco-lib
is available on PyPI:
pip install coco-lib
Usage
Creating a dataset (Object Detection)
>>> from coco_lib.common import Info, Image, License
>>> from coco_lib.objectdetection import ObjectDetectionAnnotation, \
... ObjectDetectionCategory, \
... ObjectDetectionDataset
>>> from datetime import datetime
>>> info = Info( # Describe the dataset
... year=datetime.now().year,
... version='1.0',
... description='This is a test dataset',
... contributor='Test',
... url='https://test',
... date_created=datetime.now()
... )
>>> mit_license = License( # Set the license
... id=0,
... name='MIT',
... url='https://opensource.org/licenses/MIT'
... )
>>> images = [ # Describe the images
... Image(
... id=0,
... width=640, height=480,
... file_name='test.jpg',
... license=mit_license.id,
... flickr_url='',
... coco_url='',
... date_captured=datetime.now()
... ),
... ...
... ]
>>> categories = [ # Describe the categories
... ObjectDetectionCategory(
... id=0,
... name='pedestrian',
... supercategory=''
... ),
... ...
... ]
>>> annotations = [ # Describe the annotations
... ObjectDetectionAnnotation(
... id=0,
... image_id=0,
... category_id=0,
... segmentation=[],
... area=800.0,
... bbox=[300.0, 100.0, 20.0, 40.0],
... is_crowd=0
... ),
... ...
... ]
>>> dataset = ObjectDetectionDataset( # Create the dataset
... info=info,
... images=images,
... licenses=[mit_license],
... categories=categories,
... annotations=annotations
... )
>>> dataset.save('test_dataset.json', indent=2) # Save the dataset
Loading a dataset
>>> from coco_lib.objectdetection import ObjectDetectionDataset
>>> dataset = ObjectDetectionDataset.load('test_dataset.json') # Load the dataset
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
coco-lib-0.1.3.tar.gz
(4.2 kB
view details)
Built Distribution
File details
Details for the file coco-lib-0.1.3.tar.gz
.
File metadata
- Download URL: coco-lib-0.1.3.tar.gz
- Upload date:
- Size: 4.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.12 CPython/3.9.5 Linux/5.13.0-48-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 23f50cdd4f8d93bd55e7fb6cbbe7559930b6fa27cfeedf81160db6a7e3c47286 |
|
MD5 | 863a25f29d209fc4f12a2863d4cd0c8d |
|
BLAKE2b-256 | 74fecbc0bc19e7f853ebf49560ddbb37855bc409df28bf92ba86b38ac26d83b2 |
File details
Details for the file coco_lib-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: coco_lib-0.1.3-py3-none-any.whl
- Upload date:
- Size: 5.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.12 CPython/3.9.5 Linux/5.13.0-48-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 68c2c45a8e84dfb9000bf6ee20922b92d3c7f32c8295bcdb04824161167a1446 |
|
MD5 | 0e184818362d9f0b4082be41b828fed6 |
|
BLAKE2b-256 | 7b5c8f14e0839b49a262cd0fda202287b02600e54c56b4aaf1ec09b5938c99b3 |