Skip to main content

Benchmarking framework for all types of black-box optimization algorithms, postprocessing.

Project description

COmparing Continuous Optimisers (COCO) Post-Processing

DOI
The (cocopp) package uses data generated with the COCO framework (comparing not only continuous optimisers) and produces output figures and tables in html format and for inclusion into LaTeX documents. The main documentation page can be found at getting-started and in the API documentation, but see also here.

Installation

pip install cocopp

Usage

The main method of the cocopp package is main (currently aliased to cocopp.rungeneric.main). The main method also allows basic use of the post-processing through a shell command-line interface. The recommended use is however from an IPython/Jupyter shell or notebook:

>>> import cocopp
>>> cocopp.main('exdata/my_output another_folder yet_another_or_not')  

postprocesses data from one or several folders, for example data generated with the help from the cocoex module. Each folder should contain data of a full experiment with a single algorithm. (Within the folder the data can be distributed over subfolders). Results can be explored from the ppdata/index.html file, unless a a different output folder is specified with the -o option. Comparative data from over 200 full experiments are archived online and can be listed, filtered, and retrieved from cocopp.archives (of type OfficialArchives) and processed alone or together with local data. For example

>>> cocopp.archives.bbob('bfgs')  
['2009/BFGS_...

lists all data sets run on the bbob testbed containing 'bfgs' in their name. The first in the list can be postprocessed by

>>> cocopp.main('bfgs!')  

All of them can be processed like

>>> cocopp.main('bfgs*')  

Only a trailing * is accepted and any string containing the substring is matched. The postprocessing result of

>>> cocopp.main('bbob/2009/*')  

can be browsed at https://numbbo.github.io/ppdata-archive/bbob/2009. To display algorithms in the background, the genericsettings.background variable needs to be set:

>>> cocopp.genericsettings.background = {None: cocopp.archives.bbob.get_all('bfgs')}  

where None invokes the default color (grey) and line style (solid) genericsettings.background_default_style. Now we could compare our own data with the first 'bfgs'-matching archived algorithm where all other archived BFGS data are shown in the background with the command

>>> cocopp.main('exdata/my_output bfgs!')  

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cocopp-2.6.5a3.tar.gz (8.6 MB view details)

Uploaded Source

File details

Details for the file cocopp-2.6.5a3.tar.gz.

File metadata

  • Download URL: cocopp-2.6.5a3.tar.gz
  • Upload date:
  • Size: 8.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for cocopp-2.6.5a3.tar.gz
Algorithm Hash digest
SHA256 93557eb765ebdefe33737950afc8b0693c76abbc325d5519480c35cfc348ca81
MD5 c9b1541a0c486df0992bf6208969ed2b
BLAKE2b-256 f9473288702c365539cd93193b4d86357573bac2934da30992a26af82266cebb

See more details on using hashes here.

Provenance

The following attestation bundles were made for cocopp-2.6.5a3.tar.gz:

Publisher: tag_release.yml on numbbo/coco-postprocess

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page