Skip to main content

A utility to convert CODAR total ASCII files into CF NetCDF files.

Project description

# codar2netcdf [![Build Status](https://travis-ci.org/axiom-data-science/codar2netcdf.svg?branch=master)](https://travis-ci.org/axiom-data-science/codar2netcdf)

Converting CODAR Total ASCII files (the final total current speed and direction
of the combined radial data) into CF NetCDF files.

## Installation

```
# pip
$ pip install codar2netcdf

# conda
$ conda install -c ioos codar2netcdf
```

## Usage

```python
In [1]: from codar2netcdf import CodarAsciiTotals
In [2]: w = CodarAsciiTotals('totals.txt')

# Pandas dataframe of the data
In [3]: w.data.head()
Out[3]:
Longitude Latitude U comp V comp VectorFlag U StdDev V StdDev
0 -83.004520 25.569613 -14.822 43.085 0 12.89 23.04
1 -82.905005 25.569578 -19.047 45.790 0 14.71 24.21
2 -82.805491 25.569473 1.059 9.831 0 12.31 18.06
3 -83.104110 25.659845 -7.531 38.266 0 9.61 22.19
4 -83.004520 25.659880 -17.075 44.413 0 11.82 23.51
...

# Export to netCDF file
In [4]: w.export('out.nc', ascii_grid='grid.txt')

In [5]: import netCDF4
In [6]: netCDF4.Dataset('out.nc').variables
Out[6]:
OrderedDict([('time', <class 'netCDF4._netCDF4.Variable'>
int64 time(time)
_FillValue: -999
units: seconds since 1970-01-01 00:00:00
standard_name: time
calendar: gregorian
long_name: time
unlimited dimensions:
current shape = (1,)
filling on),

('lat', <class 'netCDF4._netCDF4.Variable'>
float64 lat(x, y)
_FillValue: -999.9
units: degrees_north
standard_name: latitude
axis: Y
long_name: latitude
unlimited dimensions:
current shape = (130, 210)
filling on),

('lon', <class 'netCDF4._netCDF4.Variable'>
float64 lon(x, y)
_FillValue: -999.9
units: degrees_east
standard_name: longitude
axis: X
long_name: longitude
unlimited dimensions:
current shape = (130, 210)
filling on),

('z', <class 'netCDF4._netCDF4.Variable'>
int64 z(z)
_FillValue: -999
units: m
standard_name: depth
positive: down
axis: Z
long_name: depth
unlimited dimensions:
current shape = (1,)
filling on),

('u', <class 'netCDF4._netCDF4.Variable'>
float64 u(time, x, y)
_FillValue: -999.9
standard_name: eastward_sea_water_velocity
long_name: Eastward Surface Current (cm/s)
units: cm/s
coordinates: time lon lat
unlimited dimensions:
current shape = (1, 130, 210)
filling on),

('v', <class 'netCDF4._netCDF4.Variable'>
float64 v(time, x, y)
_FillValue: -999.9
standard_name: northward_sea_water_velocity
long_name: Northward Surface Current (cm/s)
units: cm/s
coordinates: time lon lat
unlimited dimensions:
current shape = (1, 130, 210)
filling on),

('crs', <class 'netCDF4._netCDF4.Variable'>
int32 crs()
long_name: http://www.opengis.net/def/crs/EPSG/0/4326
grid_mapping_name: latitude_longitude
epsg_code: EPSG:4326
inverse_flattening: 298.257223563
semi_major_axis: 6378137.0
unlimited dimensions:
current shape = ()
filling on, default _FillValue of -2147483647 used)
])
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

codar2netcdf-0.0.2.tar.gz (6.0 kB view details)

Uploaded Source

File details

Details for the file codar2netcdf-0.0.2.tar.gz.

File metadata

File hashes

Hashes for codar2netcdf-0.0.2.tar.gz
Algorithm Hash digest
SHA256 db8872b21bc0d97f365f551c9b8a6e297811a14bbbde10a8fe62d0bcf15b48e7
MD5 30163273ed1d8e8578249731e6d99e73
BLAKE2b-256 1ec8856a83e9cc306f0e25453c0754da20e3306828754602db9825ad2585d970

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page