Python syntax generator based on Object-Oriented Programing, type hints, and simplicity
Project description
CodeMate
Python syntax generator based on Object-Oriented Programing, type hints, and simplicity
Resources
Goals
Easily generating python code without the need to care for styling and typo's.
Use Cases
The use cases for using this pack may be one of the following:
-
Generate Python clients by protocols:
-
OpenAPI
-
AsyncAPI
-
ProtoBuf
-
-
Generate adapters between the code to services I/O.
Set Up
pip install codemate
Versioning
This project is based on Semantic Versioning 2.0.0 methodology.
Use case example
An example of how to use the components in this Python package to generate a client by API.
from typing import Tuple
from codemate import Class, ClassMethod, File, Function, Method, StaticMethod
DECORATOR_NAME = "timer"
API_STRUCTURE = [
{"operation_name": "get_x", "return_value": "List[int]"},
{"operation_name": "get_y", "return_value": "str"},
{"operation_name": "post_x", "return_value": "bool"},
{"operation_name": "post_y", "return_value": "bool"},
]
def _set_file_docs(file: File) -> None:
file.add_doc_lines(
" Example ".center(90, "-"),
"This is an example of how to use this Python package to generate easily and safely",
"Python syntax.",
)
file.add_doc_line("")
file.add_doc_block(
"""
The use cases for using this pack may be one of the following:
* Generate Python clients by protocols:
* OpenAPI
* AsyncAPI
* ProtoBuf
* Generate adapters between the code to systems I/O.
Easily generating python code without the need to care for styling and indentation.
""".strip(
"\n"
)
)
file.add_doc_line("")
file.add_doc_line("".center(90, "-"))
def _create_file_base() -> File:
file = File()
_set_file_docs(file)
file.add_specific_import("logging", "getLogger")
file.add_specific_import("logging", "INFO, StreamHandler")
file.add_specific_import("logging", "DEBUG", "Logger")
file.add_variable("LOGGER", type="Logger", value="getLogger(__name__)")
file.add_syntax_block(
"""
LOGGER.setLevel(DEBUG)
_channel = StreamHandler()
_channel.setLevel(INFO)
LOGGER.addHandler(_channel)
LOGGER.debug("✨So far so good✨")
""".strip(
"\n"
)
)
return file
def _create_inner_function() -> Function:
function = Function(name="decorator", arguments=("*args", "**kwargs"))
function.add_import("time")
function.add_syntax_block(
"""
start = time.perf_counter()
return_value = func(*args, **kwargs)
end = time.perf_counter()
name = getattr(func, "__name__", "UnKnown")
LOGGER.info(f"The execution of '{name}' took {end - start:0.4f} seconds")
return return_value
""".strip(
"\n"
)
)
return function
def _create_decorator():
function = Function(
name=DECORATOR_NAME, arguments=("func:Callable",), return_value="Callable"
)
function.add_doc_block(
"""
A decorator that times the execution of the wrapped function.
Args:
func (Callable): The wrapped function.
""".strip(
"\n"
)
)
function.add_specific_import("typing", "Callable")
inner_function = _create_inner_function()
function.insert(inner_function)
function.add_syntax_line("return decorator")
return function
def _create_init() -> Method:
method = Method(
"__init__", arguments=("logger:Logger=LOGGER",), return_value="None"
)
method.add_specific_import("logging", "Logger")
method.add_specific_import("typing", "List")
method.add_variable("self._logger", value="logger")
method.add_variable("self._size", value="0")
return method
def _create_operations() -> Tuple[Method, ...]:
methods = []
for _operation in API_STRUCTURE:
_name, _return_value = _operation.values()
_method = Method(_name, arguments=("item_id:str",), return_value=_return_value)
_method.add_decorator("timer")
_method.add_syntax_line("pass")
methods.append(_method)
return tuple(methods)
def _create_calc_method() -> StaticMethod:
method = StaticMethod(
"calc",
arguments=(
"key:str",
"value:int",
),
return_value="int",
)
method.add_decorator("timer")
method.add_syntax_line("pass")
return method
def _create_methods() -> Tuple[Function, ...]:
methods = []
methods.append(_create_init())
methods.extend(_create_operations())
len_ = Method("__len__", return_value="int")
len_.add_syntax_line("return self._size")
methods.append(len_)
set_base_method = ClassMethod("set_base", return_value="int")
set_base_method.add_syntax_line("pass")
methods.append(set_base_method)
methods.append(_create_calc_method())
return tuple(methods)
def _create_class() -> Class:
class_ = Class(name="APIWrapper", inherit=("Sized",))
class_.add_doc_line("A class that represents a generated client for a defined API structure.")
class_.add_specific_import("collections", "Sized")
class_.add_specific_import("logging", "Logger")
for method in _create_methods():
class_.insert(method)
return class_
def main():
"""
An example of how to use the components in this Python package to generate a client
by API.
"""
file = _create_file_base()
file.insert(_create_decorator())
file.insert(_create_class())
return file
Generating the syntax using print(block.use_black())
, we will receive:
"""
--------------------------------- Warning generated file ---------------------------------
Generated at: 2021-07-11T13:10:57.071246
------------------------------------------------------------------------------------------
---------------------------------------- Example -----------------------------------------
This is an example of how to use this Python package to generate easily and safely
Python syntax.
The use cases for using this pack may be one of the following:
* Generate Python clients by protocols:
* OpenAPI
* AsyncAPI
* ProtoBuf
* Generate adapters between the code to systems I/O.
Easily generating python code without the need to care for styling and indentation.
------------------------------------------------------------------------------------------
"""
import time
from collections import Sized
from logging import DEBUG, INFO, Logger, StreamHandler, getLogger
from typing import Callable, List
LOGGER: Logger = getLogger(__name__)
LOGGER.setLevel(DEBUG)
_channel = StreamHandler()
_channel.setLevel(INFO)
LOGGER.addHandler(_channel)
LOGGER.debug("✨So far so good✨")
def timer(func: Callable) -> Callable:
"""
A decorator that times the execution of the wrapped function.
Args:
func (Callable): The wrapped function.
"""
def decorator(*args, **kwargs):
start = time.perf_counter()
return_value = func(*args, **kwargs)
end = time.perf_counter()
name = getattr(func, "__name__", "UnKnown")
LOGGER.info(f"The execution of '{name}' took {end - start:0.4f} seconds")
return return_value
return decorator
class APIWrapper(Sized):
"""
A class that represents a generated client for a defined API structure.
"""
def __init__(self, logger: Logger = LOGGER) -> None:
self._logger = logger
self._size = 0
@timer
def get_x(self, item_id: str) -> List[int]:
pass
@timer
def get_y(self, item_id: str) -> str:
pass
@timer
def post_x(self, item_id: str) -> bool:
pass
@timer
def post_y(self, item_id: str) -> bool:
pass
def __len__(self) -> int:
return self._size
@classmethod
def set_base(cls) -> int:
pass
@staticmethod
@timer
def calc(key: str, value: int) -> int:
pass
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.