Skip to main content

A package to download, load, and process multiple benchmark multi-omic drug response datasets

Project description

Cancer Omics Drug Experiment Response Dataset

There is a recent explosion of deep learning algorithms that to tackle the computational problem of predicting drug treatment outcome from baseline molecular measurements. To support this,we have built a benchmark dataset that harmonizes diverse datasets to better assess algorithm performance.

This package collects diverse sets of paired molecular datasets with corresponding drug sensitivity data. All data here is reprocessed and standardized so it can be easily used as a benchmark dataset for the This repository leverages existing datasets to collect the data required for deep learning model development. Since each deep learning model requires distinct data capabilities, the goal of this repository is to collect and format all data into a schema that can be leveraged for existing models.

The goal of this repository is two-fold: First, it aims to collate and standardize the data for the broader community. This requires running a series of scripts to build and append to a standardized data model. Second, it has a series of scripts that pull from the data model to create model-specific data files that can be run by the data infrastructure.

coderdata Data Model

The goal of the data model is to collate drug response data together with molecular data in a way that can be easily ingested by machine learning models. The overall schema is shown below.

We will store the data in tables that are represented by the files below. Each data-specific model can be generated from a smaller set of these tables. The schema for these tables is represented below.

For each dataset added, the files are comma-delimited and named follows:

  1. genes.csv
  2. drugs.tsv.gz --> Drug names have commas and quotes in them, therefore require tab delimited
  3. samples.csv
  4. experiments.csv.gz --> compressed to fit on github
  5. transcriptomics.csv.gz
  6. mutations.csv.gz
  7. copy_number.csv.gz
  8. methylation.csv.gz
  9. mirnas.csv.gz

Building the data model

Below is a description of how the data model is built.

Data model step Description/Dependencies Script Destination
Build cell line data Runs through PGX and existing CCLE data to compile all values cell_line/buildInitialDataset.py [./cell_line]
Build cptac data This uses the genes files created in the [./cell_line] directory but generates additional samples. cptac/getCptacData.py [./cptac]
Get HCMI data This uses a fixed manifest to download the data into the proper schema hcmi/getHCMIData.py [./hcmi]

Current data

What data is stored here?

Using the data model

Files are stored on FigShare. We need to build a script that pulls those data as needed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coderdata-0.1.7.tar.gz (11.1 kB view details)

Uploaded Source

Built Distribution

coderdata-0.1.7-py3-none-any.whl (14.7 kB view details)

Uploaded Python 3

File details

Details for the file coderdata-0.1.7.tar.gz.

File metadata

  • Download URL: coderdata-0.1.7.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for coderdata-0.1.7.tar.gz
Algorithm Hash digest
SHA256 bed2fb2496d175b145094e6310add3addb93292b8da82e73a9182d86b6ec6c44
MD5 166375f70ef5dedbaccf8022850a5af2
BLAKE2b-256 344dea492d9a3aeaa154754b425da54eb0096d1c2cf3b0a78922f0aa685441de

See more details on using hashes here.

File details

Details for the file coderdata-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: coderdata-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 14.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for coderdata-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 47ce6d5e8f0abe723dbc71f3e1eb751fcee4b51c90b7343488e0b3019577ba5b
MD5 a97778fcad583bfacbd44b5ba5e40cdf
BLAKE2b-256 320037612b250d7dedf12197ce8cb54d3bda203092dd11eaae2265eed1896bee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page