Skip to main content

A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models

Project description

adapter-transformers

A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models

Tests GitHub PyPI

adapter-transformers is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules.

💡 Important: This library can be used as a drop-in replacement for HuggingFace Transformers and regularly synchronizes new upstream changes. Thus, most files in this repository are direct copies from the HuggingFace Transformers source, modified only with changes required for the adapter implementations.

Installation

adapter-transformers currently supports Python 3.6+ and PyTorch 1.3.1+. After installing PyTorch, you can install adapter-transformers from PyPI ...

pip install -U adapter-transformers

... or from source by cloning the repository:

git clone https://github.com/adapter-hub/adapter-transformers.git
cd adapter-transformers
pip install .

Getting Started

HuggingFace's great documentation on getting started with Transformers can be found here. adapter-transformers is fully compatible with Transformers.

To get started with adapters, refer to these locations:

  • Colab notebook tutorials, a series notebooks providing an introduction to all the main concepts of (adapter-)transformers and AdapterHub
  • https://docs.adapterhub.ml, our documentation on training and using adapters with adapter-transformers
  • https://adapterhub.ml to explore available pre-trained adapter modules and share your own adapters
  • Examples folder of this repository containing HuggingFace's example training scripts, many adapted for training adapters

Implemented Methods

Currently, adapter-transformers integrates all architectures and methods listed below:

Method Paper(s) Quick Links
Bottleneck adapters Houlsby et al. (2019)
Bapna and Firat (2019)
Quickstart, Notebook
AdapterFusion Pfeiffer et al. (2021) Docs: Training, Notebook
MAD-X,
Invertible adapters
Pfeiffer et al. (2020) Notebook
AdapterDrop Rücklé et al. (2021) Notebook
MAD-X 2.0,
Embedding training
Pfeiffer et al. (2021) Docs: Embeddings, Notebook
Prefix Tuning Li and Liang (2021) Docs
Parallel adapters,
Mix-and-Match adapters
He et al. (2021) Docs
Compacter Mahabadi et al. (2021) Docs

Supported Models

We currently support the PyTorch versions of all models listed on the Model Overview page in our documentation.

Citation

If you use this library for your work, please consider citing our paper AdapterHub: A Framework for Adapting Transformers:

@inproceedings{pfeiffer2020AdapterHub,
    title={AdapterHub: A Framework for Adapting Transformers},
    author={Pfeiffer, Jonas and
            R{\"u}ckl{\'e}, Andreas and
            Poth, Clifton and
            Kamath, Aishwarya and
            Vuli{\'c}, Ivan and
            Ruder, Sebastian and
            Cho, Kyunghyun and
            Gurevych, Iryna},
    booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
    pages={46--54},
    year={2020}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cody-adapter-transformers-3.0.1.tar.gz (3.2 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file cody-adapter-transformers-3.0.1.tar.gz.

File metadata

File hashes

Hashes for cody-adapter-transformers-3.0.1.tar.gz
Algorithm Hash digest
SHA256 272fddb6f51e9e1592a58a1ff8d1eaf8d252a28c41665d4ea7246f0449f4ac50
MD5 65e2cd4deaa3898ad17c805e406dd745
BLAKE2b-256 cfeeedbd101049c8255189e0a5678e003c02ca18ab29b138cf74d79e6089ea25

See more details on using hashes here.

File details

Details for the file cody_adapter_transformers-3.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for cody_adapter_transformers-3.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b558cd3af3aa2e444941a9d15e2ccd4f86b974d5f7b59261e858eda7a20d07bb
MD5 1a8c9aeaa48dca724e0ec7b0d1df8717
BLAKE2b-256 bb9f269e74fe5d20a4c4e06f01ad29946e33978c16d34f3afc03281b340ae974

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page