Skip to main content

Basic tools and wrappers for enabling not-too-alien syntax when running columnar Collider HEP analysis.

Project description

logo

coffea - Columnar Object Framework For Effective Analysis

https://zenodo.org/badge/159673139.svg https://github.com/CoffeaTeam/coffea/actions/workflows/ci.yml/badge.svg https://codecov.io/gh/CoffeaTeam/coffea/branch/master/graph/badge.svg?event=schedule https://badge.fury.io/py/coffea.svg https://img.shields.io/pypi/dm/coffea.svg https://img.shields.io/conda/vn/conda-forge/coffea.svg https://badges.gitter.im/CoffeaTeam/coffea.svg https://mybinder.org/badge_logo.svg

Basic tools and wrappers for enabling not-too-alien syntax when running columnar Collider HEP analysis.

coffea is a prototype package for pulling together all the typical needs of a high-energy collider physics (HEP) experiment analysis using the scientific python ecosystem. It makes use of uproot and awkward-array to provide an array-based syntax for manipulating HEP event data in an efficient and numpythonic way. There are sub-packages that implement histogramming, plotting, and look-up table functionalities that are needed to convey scientific insight, apply transformations to data, and correct for discrepancies in Monte Carlo simulations compared to data.

coffea also supplies facilities for horizontally scaling an analysis in order to reduce time-to-insight in a way that is largely independent of the resource the analysis is being executed on. By making use of modern big-data technologies like Apache Spark, parsl, Dask , and Work Queue, it is possible with coffea to scale a HEP analysis from a testing on a laptop to: a large multi-core server, computing clusters, and super-computers without the need to alter or otherwise adapt the analysis code itself.

coffea is a HEP community project collaborating with iris-hep and is currently a prototype. We welcome input to improve its quality as we progress towards a sensible refactorization into the scientific python ecosystem and a first release. Please feel free to contribute at our github repo!

Installation

Install coffea like any other Python package:

pip install coffea

or similar (use sudo, --user, virtualenv, or pip-in-conda if you wish). For more details, see the Installing coffea section of the documentation.

Strict dependencies

The following are installed automatically when you install coffea with pip:

  • numpy (1.22+);

  • uproot for interacting with ROOT files and handling their data transparently;

  • awkward-array to manipulate complex-structured columnar data, such as jagged arrays;

  • numba just-in-time compilation of python functions;

  • scipy for many statistical functions;

  • matplotlib as a plotting backend;

  • and other utility packages, as enumerated in pyproject.toml.

Documentation

All documentation is hosted at https://coffea-hep.readthedocs.io/

Citation

If you would like to cite this code in your work, you can use the zenodo DOI indicated in CITATION.cff, or the latest DOI. You may also cite the proceedings:

  • “N. Smith et al 2020 EPJ Web Conf. 245 06012”

  • “L. Gray et al 2023 J. Phys.: Conf. Ser. 2438 012033”

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coffea-2024.11.0.tar.gz (24.9 MB view details)

Uploaded Source

Built Distribution

coffea-2024.11.0-py3-none-any.whl (192.7 kB view details)

Uploaded Python 3

File details

Details for the file coffea-2024.11.0.tar.gz.

File metadata

  • Download URL: coffea-2024.11.0.tar.gz
  • Upload date:
  • Size: 24.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for coffea-2024.11.0.tar.gz
Algorithm Hash digest
SHA256 505a72c70184c0e24e4186c19933c67384c4eec6edab14a4e9fa46c535f3b640
MD5 b92550bd9d7c1261e2f95782156dd261
BLAKE2b-256 58e8d3ee508486c0b6bff18814c1fa6598a0ea2434645e156653e7ef426d0019

See more details on using hashes here.

File details

Details for the file coffea-2024.11.0-py3-none-any.whl.

File metadata

  • Download URL: coffea-2024.11.0-py3-none-any.whl
  • Upload date:
  • Size: 192.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for coffea-2024.11.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9f1e7df464c0658a7f596429bc9d82587e0dde6329401a4ebd538ef505b84c8a
MD5 4423f4f168f9eb0e7c7392e6bd9ef9fe
BLAKE2b-256 2d2f8699336a77d905327984495ac91d9570d12cb3c670ebb2fa1cfbfe105683

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page