Skip to main content

Experiment toolkits

Project description

Introduction for Cof utils

There're several useful tools for experiments, such as cofrun, coflogger, and logspy.

Install

By Pypi

pip install cofutils

By Source

git clone https://gitee.com/haiqwa/cofutils.git
pip install .

Usage

Cof Memory Report

Print GPU memory states by pytorch cuda API

  • MA: memory current allocated
  • MM: max memory allocated
  • MR: memory reserved by pytorch
from cofutils import cofmem

cofmem("before xxx")
# ...
cofmem("after xxx")
(deepspeed) haiqwa@gpu9:~/documents/cofutils$ python ~/test.py 
[2023-11-11 15:32:46.873]  [Cof INFO]: before xxx GPU Memory Report (GB): MA = 0.00 | MM = 0.00 | MR = 0.00
[2023-11-11 15:32:46.873]  [Cof INFO]: after xxx GPU Memory Report (GB): MA = 0.00 | MM = 0.00 | MR = 0.00

Cof Logger

Cof logger can print user message according to print-level. In *.py:

from cofutils import coflogger
coflogger.debug("this is debug")
coflogger.info("this is info")
coflogger.warn("this is warn")
coflogger.error("this is error")

Print-level is determined by environment variable COF_DEBUG:

COF_DEBUG=WARN python main.py

The default print-level is INFO. By the way, only the node of 'rank=0' can output log in distributed environment

Cof CSV

Dump data into csv format.

  • Get a unique csv writer by calling cofcsv
  • Write data in dict type. You can append data at anywhere and anytime
  • Save data as [name].csv under the root_dir. After that cofcsv will clear data in default
from cofutils import cofcsv

data = {'a':1, 'b':2, 'c':3}
test_csv = cofcsv('test')
test_csv.write(data)
data = {'a':4, 'b':5, 'c':6}
test_csv.write(data)
cofcsv.save(root_dir='csv_output')

Cof Timer

Cof timer is similar to the Timer in Megatron-LM

It support two log modes:

  • Organize the result into a string and output it into STDOUT which is easy to view for users
  • Directly return the result time table

If you call .log to output time, then the timer will reset automatically

from cofutils import coftimer
from cofutils import coflogger
import time
test_1 = coftimer('test1')
test_2 = coftimer('test2')

for _ in range(3):
    test_1.start()
    time.sleep(1)
    test_1.stop()

coftimer.log(normalizer=3, timedict=False)


for _ in range(3):
    test_2.start()
    time.sleep(1)
    test_2.stop()

time_dict = coftimer.log(normalizer=3, timedict=True)
coflogger.info(time_dict)
(deepspeed) haiqwa@gpu9:~/documents/cofutils$ python ~/test.py 
[2023-11-11 16:15:43.942]  [Cof INFO]: time (ms) | test1: 1001.20 | test2: 0.00
NoneType: None
[2023-11-11 16:15:46.946]  [Cof INFO]: {'test1': 0.0, 'test2': 1001.2083053588867}

Cofrun is all you need!

User can easily launch distributed task by cofrun. What users need to do is to provide a template bash file and configuration json file.

You can see the examples in example/

(deepspeed) haiqwa@gpu9:~/documents/cofutils/example$ cofrun -h
usage: cofrun [-h] [--file FILE] [--input INPUT] [--template TEMPLATE] [--output OUTPUT] [--test] [--list] [--range RANGE]

optional arguments:
  -h, --help            show this help message and exit
  --file FILE, -f FILE  config file path, default is ./config-template.json
  --input INPUT, -i INPUT
                        run experiments in batch mode. all config files are placed in input directory
  --template TEMPLATE, -T TEMPLATE
                        provide the path of template .sh file
  --output OUTPUT, -o OUTPUT
                        write execution output to specific path
  --test, -t            use cof run in test mode -> just generate bash script
  --list, -l            list id of all input files, only available when input dir is provided
  --range RANGE, -r RANGE
                        support 3 formats: [int | int,int,int... | int-int], and int value must be > 0

Let's run the example:

cofrun -f demo_config.json -T demo_template.sh

And the execution history of cofrun will be written into history.cof

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cofutils-0.0.7.tar.gz (11.8 kB view details)

Uploaded Source

Built Distribution

cofutils-0.0.7-py3-none-any.whl (11.6 kB view details)

Uploaded Python 3

File details

Details for the file cofutils-0.0.7.tar.gz.

File metadata

  • Download URL: cofutils-0.0.7.tar.gz
  • Upload date:
  • Size: 11.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for cofutils-0.0.7.tar.gz
Algorithm Hash digest
SHA256 d5e1f5936d84d119954b0370ec57e7097df5d59d5f0f75663a56c090b9f008fd
MD5 0bd4386a1725b62b50788b77c9b9e94f
BLAKE2b-256 fa4f5332b765b296c4ac625cf8222de3e0a595f5f6811d406226fc36c3578e72

See more details on using hashes here.

File details

Details for the file cofutils-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: cofutils-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 11.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for cofutils-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 19b19890334e69496306f8b17ee6551e063747334ef25a61093d438e1bb2cfc8
MD5 5ac9db634325166735a4b441bff3d376
BLAKE2b-256 ad93c999448d24eef68b60d1ee2c9d9e674aa370ccf80f91de096669aa4b3a4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page