Skip to main content

A sample code repo for model customization using Python for Cognitive Service for Vision.

Project description

Azure Cognitive Services Computer Vision - Python SDK Samples

Model Customization

Computer Vision's Model Customization is a custom model training service that allows users like developers to easily train an image classification model (Multiclass only for now) or object detection model, with low-code experience and very little understanding of machine learning or computer vision required. The service is available in regions: West US 2, East US, West Europe.

This is a sample repository demonstrating how to train and predict a custom model with Cognitive Service for Vision, using Python. To get started, check out this tutorial in Python notebook.

Moreover, you can use your familiar Azure Machine Learning (AML) environment and Data Science Tools (AML Data Assets or Jobs, CLIv2 or MLFlow) for training and evaluating your custom Florence model following this documentation.

Product Recognition

One of the scenarios we would like to introudce as a model customization scenario is Product Recognition. Computer Vision's product recognition service has been designed to be used in retail scenarios, where users would like to detect products, such as Consumer Packaged Goods (CPG), on a shelf. It comes with a set of APIs, a pre-built AI model, and a custom AI model that can be trained following the model customization guide above. You can try these out by following tutorials in Python notebooks:

  • Image Composition: for stitching together the segmented shelf images using Image Stitching API, as well as adjusting any slanted or squished shelf images to a correct orientation using Image Rectification API
  • Product Recognition: for detecting products and gaps on a shelf image using a pre-built model, and individually classifying the detected products using customized model, both using Product Understanding API
  • Planogram Compliance: for assessing the matchings between a planogram schema and the detected products on a shelf using Planogram Compliance API

Existing Custom Vision (customvision.ai) Customers

Refer to export_cvs_data_to_blob_storage.ipynb for instructions or directly run export_cvs_data_to_blob_storage.py to export Custom Vision images and annotations to your own blob storage, which can be later used for model customization training.

Once data is exported, you can use it with Cognitive Service Vision Model Customization.

RESTful API & SDK

If you would like to explore more functionalities offered in Cognitive Service Vision, you can refer to this link for a quick start.

FAQ & Docs

For frequently asked questions or quick troubleshooting, check out FAQ, including things like troubleshooting guides, quota information, etc.

For more documentation, check out:

  • API: Here
  • SDK: Here (note that model customization training and product recognition are not supported in this SDK yet, while prediction is supported.)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file cognitive-service-vision-model-customization-python-samples-0.0.6.tar.gz.

File metadata

File hashes

Hashes for cognitive-service-vision-model-customization-python-samples-0.0.6.tar.gz
Algorithm Hash digest
SHA256 2501d6e0553987a8573a176471c2cf4675bbc5a276553b2585a57a43c08d9ed4
MD5 b2eeafda9b3bb262f794ccf92b6744df
BLAKE2b-256 4d7f3035cc8372ccc7a064d29b4801544837f2a546d42c469d3f8ce7f1c20bd6

See more details on using hashes here.

File details

Details for the file cognitive_service_vision_model_customization_python_samples-0.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for cognitive_service_vision_model_customization_python_samples-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 9680083c86cba1f9bf073221bc5d8b113e3dd2a10f7419454836c5a35b5f4d0c
MD5 942833d8f5f639d580d5335b86d4839a
BLAKE2b-256 1739efb9e64296abc318b6a1767dbe57a481d0be0c0369fd668b9afcc6fc8a16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page