Skip to main content

A web application designed for NLP data annotation using Interactive Clustering methodology.

Project description

Interactive Clustering GUI

ci documentation pypi version DOI

A web application designed for NLP data annotation using Interactive Clustering methodology.

Quick description

Interactive clustering is a method intended to assist in the design of a training data set.

This iterative process begins with an unlabeled dataset, and it uses a sequence of two substeps :

  1. the user defines constraints on data sampled by the computer ;
  2. the computer performs data partitioning using a constrained clustering algorithm.

Thus, at each step of the process :

  • the user corrects the clustering of the previous steps using constraints, and
  • the computer offers a corrected and more relevant data partitioning for the next step.

This web application implements this annotation methodology with several features:

  • data preprocessing and vectorization in order to reduce noise in data;
  • constrainted clustering in order to automatically partition the data;
  • constraints sampling in order to select the most relevant data to annotate;
  • binary constraints annotation in order to correct clustering relevance;
  • annotation review and conflicts analysis in order to improve constraints consistency.

For more details, read the Documentation and the articles in the References section.

Documentation

Requirements

Interactive Clustering GUI requires Python 3.8 or above.

To install with pip:

# install package
python3 -m pip install cognitivefactory-interactive-clustering-gui

# install spacy language model dependencies (the one you want, with version "3.1.x")
python3 -m spacy download fr_core_news_md-3.1.0 --direct

To install with pipx:

# install pipx
python3 -m pip install --user pipx

# install package
pipx install --python python3 cognitivefactory-interactive-clustering-gui

# install spacy language model dependencies (the one you want, with version "3.1.x")
python3 -m spacy download fr_core_news_md-3.1.0 --direct

Run

To display the help message:

cognitivefactory-interactive-clustering-gui --help

To launch the web application:

cognitivefactory-interactive-clustering-gui  # launch on 127.0.0.1:8080

Then, go to one of the following pages in your browser:

Development

To work on this project or contribute to it, please read:

References

  • Interactive Clustering:

    • First presentation: Schild, E., Durantin, G., Lamirel, J.C., & Miconi, F. (2021). Conception itérative et semi-supervisée d'assistants conversationnels par regroupement interactif des questions. In EGC 2021 - 21èmes Journées Francophones Extraction et Gestion des Connaissances. Edition RNTI. ⟨hal-03133007⟩.
    • Theoretical study: Schild, E., Durantin, G., Lamirel, J., & Miconi, F. (2022). Iterative and Semi-Supervised Design of Chatbots Using Interactive Clustering. International Journal of Data Warehousing and Mining (IJDWM), 18(2), 1-19. http://doi.org/10.4018/IJDWM.298007. ⟨hal-03648041⟩.
    • Methodological discussion: Schild, E., Durantin, G., & Lamirel, J.C. (2021). Concevoir un assistant conversationnel de manière itérative et semi-supervisée avec le clustering interactif. In Atelier - Fouille de Textes - Text Mine 2021 - En conjonction avec EGC 2021. ⟨hal-03133060⟩.
    • Implementation: Schild, E. (2021). cognitivefactory/interactive-clustering. Zenodo. https://doi.org/10.5281/zenodo.4775251.
  • Web application:

    • FastAPI: https://fastapi.tiangolo.com/

How to cite

Schild, E. (2021). cognitivefactory/interactive-clustering-gui. Zenodo. https://doi.org/10.5281/zenodo.4775270.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file cognitivefactory-interactive-clustering-gui-0.4.1.tar.gz.

File metadata

File hashes

Hashes for cognitivefactory-interactive-clustering-gui-0.4.1.tar.gz
Algorithm Hash digest
SHA256 91e8c1d6faf6b25fb465334cc75a5b23ebba7a3d739c509a64afb876eca929f2
MD5 36afaface0d43412fa612a53e858fe07
BLAKE2b-256 5e0cad394a913bbdfb818e9130926f19c6fcc438b7ce563c1d1a6f25df05e2d1

See more details on using hashes here.

File details

Details for the file cognitivefactory_interactive_clustering_gui-0.4.1-py3-none-any.whl.

File metadata

File hashes

Hashes for cognitivefactory_interactive_clustering_gui-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 22b061a7b7e23d10c3139655f43916da6c42869bc5fe379152eb0ce50ce68781
MD5 0fdbb7cc54cd12e5fdd18747dff172cc
BLAKE2b-256 668c5d596a825b229159f6066633bfff738823f6de5b9f4f1cc3815d46c226e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page