Utilities for analyzing mutations and neoepitopes in patient cohorts
Project description
`|Build Status| <https://travis-ci.org/hammerlab/cohorts>`_ `|Coverage
Status| <https://coveralls.io/github/hammerlab/cohorts?branch=master>`_
Cohorts
=======
Cohorts is a library for analyzing and plotting clinical data, mutations
and neoepitopes in patient cohorts.
It calls out to external libraries like
`topiary <https://github.com/hammerlab/topiary>`_ and caches the results
for easy manipulation.
Installation
------------
You can install Cohorts using
`pip <https://pip.pypa.io/en/latest/quickstart.html>`_:
::
pip install cohorts
Usage Examples
--------------
::
patient_1 = Patient(
id="patient_1",
os=70,
pfs=24,
deceased=True,
progressed=True,
benefit=False
)
patient_2 = Patient(
id="patient_2",
os=100,
pfs=50,
deceased=False,
progressed=True,
benefit=False
)
cohort = Cohort(
patients=[patient_1, patient_2],
cache_dir="/where/cohorts/results/get/saved"
)
cohort.plot_survival(on="os")
::
sample_1_tumor = Sample(
is_tumor=True,
bam_path_dna="/path/to/dna/bam",
bam_path_rna="/path/to/rna/bam"
)
patient_1 = Patient(
id="patient_1",
...
snv_vcf_paths=["/where/my/mutect/vcfs/live",
"/where/my/strelka/vcfs/live"]
indel_vcfs_paths=[...],
tumor_sample=sample_1_tumor,
...
)
cohort = Cohort(
...
patients=[patient_1]
)
# Comparison plot of missense mutation counts between benefit and no-benefit patients
cohort.plot_benefit(on=missense_snv_count)
# Raw missense mutations counts
missense_snv_col, dataframe = cohort.as_dataframe(missense_snv_count)
(col_1, col_2), dataframe = cohort.as_dataframe([missense_snv_count, neoantigen_count])
.. |Build
Status| image:: https://travis-ci.org/hammerlab/cohorts.svg?branch=master
.. |Coverage
Status| image:: https://coveralls.io/repos/hammerlab/cohorts/badge.svg?branch=master&service=github
Status| <https://coveralls.io/github/hammerlab/cohorts?branch=master>`_
Cohorts
=======
Cohorts is a library for analyzing and plotting clinical data, mutations
and neoepitopes in patient cohorts.
It calls out to external libraries like
`topiary <https://github.com/hammerlab/topiary>`_ and caches the results
for easy manipulation.
Installation
------------
You can install Cohorts using
`pip <https://pip.pypa.io/en/latest/quickstart.html>`_:
::
pip install cohorts
Usage Examples
--------------
::
patient_1 = Patient(
id="patient_1",
os=70,
pfs=24,
deceased=True,
progressed=True,
benefit=False
)
patient_2 = Patient(
id="patient_2",
os=100,
pfs=50,
deceased=False,
progressed=True,
benefit=False
)
cohort = Cohort(
patients=[patient_1, patient_2],
cache_dir="/where/cohorts/results/get/saved"
)
cohort.plot_survival(on="os")
::
sample_1_tumor = Sample(
is_tumor=True,
bam_path_dna="/path/to/dna/bam",
bam_path_rna="/path/to/rna/bam"
)
patient_1 = Patient(
id="patient_1",
...
snv_vcf_paths=["/where/my/mutect/vcfs/live",
"/where/my/strelka/vcfs/live"]
indel_vcfs_paths=[...],
tumor_sample=sample_1_tumor,
...
)
cohort = Cohort(
...
patients=[patient_1]
)
# Comparison plot of missense mutation counts between benefit and no-benefit patients
cohort.plot_benefit(on=missense_snv_count)
# Raw missense mutations counts
missense_snv_col, dataframe = cohort.as_dataframe(missense_snv_count)
(col_1, col_2), dataframe = cohort.as_dataframe([missense_snv_count, neoantigen_count])
.. |Build
Status| image:: https://travis-ci.org/hammerlab/cohorts.svg?branch=master
.. |Coverage
Status| image:: https://coveralls.io/repos/hammerlab/cohorts/badge.svg?branch=master&service=github
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
cohorts-0.1.2.tar.gz
(50.5 kB
view details)
File details
Details for the file cohorts-0.1.2.tar.gz
.
File metadata
- Download URL: cohorts-0.1.2.tar.gz
- Upload date:
- Size: 50.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3bf3ba2610f154835ccbe7447b86a7d4daef8732efc12a0a685143d7101abe3a |
|
MD5 | 82cb0fa41bf053735b554512c5f54019 |
|
BLAKE2b-256 | d3e97d1621b2f1c9e38365e8c8125825f4b0d1d31db6596593707b383ed67365 |