Skip to main content

Utilities for analyzing mutations and neoepitopes in patient cohorts

Project description

|PyPI| |Build Status| |Coverage Status|

Cohorts
=======

Cohorts is a library for analyzing and plotting clinical data, mutations
and neoepitopes in patient cohorts.

It calls out to external libraries like
`topiary <https://github.com/hammerlab/topiary>`__ and caches the
results for easy manipulation.

Installation
------------

You can install Cohorts using
`pip <https://pip.pypa.io/en/latest/quickstart.html>`__:

.. code:: bash

pip install cohorts

Features
--------

- Data management: construct a ``Cohort`` consisting of ``Patient``\ s
with ``Sample``\ s.
- Use ``varcode`` and ``topiary`` to generate and cache variant effects
and predicted neoantigens.
- Provenance: track the state of the world (package and data versions)
for a given analysis.
- Aggregation functions: built-in functions such as
``missense_snv_count``, ``neoantigen_count``,
``expressed_neoantigen_count``; or create your own functions.
- Plotting: survival curves via ``lifelines``, response/no response
plots (with Mann-Whitney and Fisher's Exact results), ROC curves.
Example: ``cohort.plot_survival(on=missense_snv_count, how="pfs")``.
- Filtering: filter collections of variants/effects/neoantigens by, for
example, variant statistics.
- Pre-define data sets to work with. Example:
``cohort.as_dataframe(join_with=["tcr", "pdl1"])``.

In addition, several other libraries make use of ``cohorts``: \*
`pygdc <http://github.com/hammerlab/pygdc>`__ \*
`query\_tcga <http://github.com/jburos/query_tcga>`__

Quick Start
-----------

One way to get started using Cohorts is to use it to analyze TCGA data.

As an example, we can create a cohort using
`query\_tcga <http://github.com/jburos/query_tcga>`__:

.. code:: python

from query_tcga import cohort, config

# provide authentication token
config.load_config('config.ini')

# load patient data
blca_patients = cohort.prep_patients(project_name='TCGA-BLCA',
project_data_dir='data')

# create cohort
blca_cohort = cohort.prep_cohort(patients=blca_patients,
cache_dir='data-cache')

Then, use ``plot_survival()`` to summarize a potential biomarker (e.g.
``snv_count``) by survival:.

.. code:: python

from cohorts.functions import snv_count
blca_cohort.plot_survival(snv_count, how='os', threshold='median')

Which should produce a summary of results including this plot:

.. figure:: /docs/survival_plot_example.png
:alt: Survival plot example

Survival plot example

We could alternatively use ``plot_benefit()`` to summarize OS>12mo
instead of survival:

.. code:: python

blca_cohort.plot_benefit(snv_count)

.. figure:: /docs/benefit_plot_example.png
:alt: Benefit plot example

Benefit plot example

See the full example in the `quick-start
notebook <http://nbviewer.jupyter.org/github/hammerlab/tcga-blca/blob/master/Quick-start%20-%20using%20Cohorts%20with%20TCGA%20data.ipynb>`__

Building from Scratch
---------------------

.. code:: python

patient_1 = Patient(
id="patient_1",
os=70,
pfs=24,
deceased=True,
progressed=True,
benefit=False
)

patient_2 = Patient(
id="patient_2",
os=100,
pfs=50,
deceased=False,
progressed=True,
benefit=False
)

cohort = Cohort(
patients=[patient_1, patient_2],
cache_dir="/where/cohorts/results/get/saved"
)

cohort.plot_survival(on="os")

.. code:: python

sample_1_tumor = Sample(
is_tumor=True,
bam_path_dna="/path/to/dna/bam",
bam_path_rna="/path/to/rna/bam"
)

patient_1 = Patient(
id="patient_1",
...
snv_vcf_paths=["/where/my/mutect/vcfs/live",
"/where/my/strelka/vcfs/live"]
indel_vcfs_paths=[...],
tumor_sample=sample_1_tumor,
...
)

cohort = Cohort(
...
patients=[patient_1]
)

.. |PyPI| image:: https://img.shields.io/pypi/v/cohorts.svg?maxAge=21600
:target:
.. |Build Status| image:: https://travis-ci.org/hammerlab/cohorts.svg?branch=master
:target: https://travis-ci.org/hammerlab/cohorts
.. |Coverage Status| image:: https://coveralls.io/repos/hammerlab/cohorts/badge.svg?branch=master&service=github
:target: https://coveralls.io/github/hammerlab/cohorts?branch=master

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cohorts-0.5.3.tar.gz (67.5 kB view details)

Uploaded Source

File details

Details for the file cohorts-0.5.3.tar.gz.

File metadata

  • Download URL: cohorts-0.5.3.tar.gz
  • Upload date:
  • Size: 67.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for cohorts-0.5.3.tar.gz
Algorithm Hash digest
SHA256 2329144c5956ad334a75161d1f57e1d6c898bdfffa38c91fbea91bcdc5bb78ba
MD5 0d785f74b091f372f43da2cbd66f31c1
BLAKE2b-256 4839438fb9f605ce01df5e20e803c91ff32e66c7b8f9608839e49b11aff25c4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page