Skip to main content

Generic computation implementation on COINSTAC.

Project description

COINSTAC computations development made easy.

PyPi version YourActionName Actions Status versions

A very intuitive wrapper for writing coinstac based computations:

  • Break down your computations into simple phases with automatic transition between phases.
  • Add as many phases as you want.
  • Phases alternate between local and remote automatically by default starting from the first phase of the local. See advanced use case example below for extras like:
    • Run phases that needs to be run multiple local-remote trips; Specify multi_iterations=True while adding a phase.
    • Run phases that needs to be run either in local or remote without making a trip(like preprocessing, gathering final results ...); Specify local_only=True while adding a phase.
  • Automatic logging that saves what comes and leaves on each phase. Just set debug=True.

Installation:

  • Run pip install coinstac-computation
  • Add entry coinstac-computation to the requirements.txt.

ComputationPhase signature:

from coinstac_computation import  ComputationPhase

class PhaseLoadData(ComputationPhase):
    def _initialize(self):
      """Put anything that needs to be initialized only once here"""
      pass
    
    def compute(self):
        out = {}
        ...
        
        """To end multi-iterative phase, and go to the next phase, in local or remote set:"""
        out['jump_to_next'] = True
        
        """To stop the computation, In remote set:"""
        out['success'] = True
        return out

Example: Gather max even numbers from each site

A full working use case is in the examples/basic directory where:

  • Local sites filters out even numbers and sends to the remote.
  • Remote finds the max across sites and returns the final result to each of the sites.
  • Sites save final result.

inputspec.json data:

[
  {
    "data": {
      "value": [10, 3, 5, 6, 7, 8, 12, 38, 32, 789, 776, 441]
    }
  },
  {
    "data": {
      "value": [12, 33, 88, 61, 37, 58, 103, 3386, 312, 9, 77, 41]
    }
  }
]

Local node pipeline:

import os
from coinstac_computation import COINSTACPyNode, ComputationPhase


class PhaseLoadData(ComputationPhase):
    def compute(self):
        data = []
        for d in self.input['data']:
            if d % 2 == 0:
                data.append(d)
        return {'filtered_data': data}


class PhaseSaveResult(ComputationPhase):
    def compute(self):
        with open(f"{self.out_dir + os.sep + 'results.txt'}", 'w') as out:
            out.write(f"{self.input['aggregated_data']}")


local = COINSTACPyNode(mode='local', debug=True)
local.add_phase(PhaseLoadData)
local.add_phase(PhaseSaveResult)

Remote node pipeline:

from coinstac_computation import COINSTACPyNode, ComputationPhase, PhaseEndWithSuccess


class PhaseCollectMaxEvenData(ComputationPhase):
    def compute(self):
        data = []
        for site, site_vars in self.input.items():
            site_max = max(site_vars['filtered_data'])
            data.append(site_max)
        return {'aggregated_data': data}


remote = COINSTACPyNode(mode='remote', debug=True)
remote.add_phase(PhaseCollectMaxEvenData)
remote.add_phase(PhaseEndWithSuccess)

Entry point:

import coinstac

from local_pipeline import local
from remote_pipeline import remote

coinstac.start(local, remote)

Run:

cd examples/basic/
~/coinstac-computation/examples/basic/$ docker build -t base . && coinstac-simulator

Advanced use cases:

1. Multiple local <---> remote iterations example:

  • Each sites cast a vote(positive vote if number is even) for multiple(default=51) times.
  • Remote gathers the votes and returns the final voting result to all sites at the end.
  • Sites save the final result.

Overview:

  1. Specify when to end the iterative phase with a phase jump signal as jump_to_next=True:
class PhaseSubmitVote(ComputationPhase):

    def _initialize(self):
        """This method runs only once"""
        self.cache['data_index'] = 0
        self.cache['data'] = []
        for line in open(self.base_dir + os.sep + self.input_args['data_source']).readlines():
            self.cache['data'].append(float(line.strip()))

    def compute(self):
        out = {
            'vote': self.cache['data'][self.cache['data_index']] % 2 == 0,
        }
        self.cache['data_index'] += 1
        
        """Send a jump to next phase signal"""
        out['jump_to_next'] = self.cache['data_index'] > len(self.cache['data']) - 1
        return out
  1. Add the phase as multi-iterations:
local.add_phase(PhaseSubmitVote, multi_iterations=True)

2. Send data across local <---> remote example:

To make it simple, we send a matrix of size 1000 by 1000 to remote, aggregate it by averaging, and return to each site.

Local:

import os
from coinstac_computation import COINSTACPyNode, ComputationPhase
import numpy as np

class PhaseLoadData(ComputationPhase):
    def compute(self):
        out = {}
        data = np.random.randn(*self.input['matrix_shape'])
        out.update(**self.send("site_matrix", data))
        return out


class PhaseSaveResult(ComputationPhase):
    def compute(self):
        data = self.recv('averaged_matrix')
        np.save(self.out_dir + os.sep + "averaged_matrix.npy", data)


local = COINSTACPyNode(mode='local', debug=True)
local.add_phase(PhaseLoadData)
local.add_phase(PhaseSaveResult)

Remote:

from coinstac_computation import COINSTACPyNode, ComputationPhase, PhaseEndWithSuccess
import numpy as np


class PhaseAggregateMatrix(ComputationPhase):
    def compute(self):
        out = {}
        data = self.recv("site_matrix")
        mean_data = np.array(data).mean(0)
        out.update(**self.send("averaged_matrix", mean_data))
        return out


remote = COINSTACPyNode(mode='remote', debug=True)
remote.add_phase(PhaseAggregateMatrix)
remote.add_phase(PhaseEndWithSuccess)

Sample logs from local0

[INPUT] 14:27:36 02/04/2022 
  ->{'data_source': 'data_file.txt'}
[CACHE] 14:27:36 02/04/2022 
  ->{'PIPELINE:LOCAL': {'index': 0, 'iterations': {'PhaseSubmitVote': 0, 'PhaseSaveResult': 0}}}
  <-{'PIPELINE:LOCAL': {'index': 0, 'iterations': {'PhaseSubmitVote': 1, 'PhaseSaveResult': 0}}, 'input_args': {'data_source': 'data_file.txt'}, 'next_phase': 'PhaseSubmitVote', 'data_index': 1, 'data': [712.0, 309.0, 574.0, 838.0, 296.0, 349.0, 781.0, 749.0, 360.0, 702.0, 253.0, 831.0, 911.0, 14.0, 259.0, 805.0, 494.0, 501.0, 549.0, 624.0, 919.0, 836.0, 362.0, 373.0, 563.0, 134.0, 610.0, 875.0, 328.0, 299.0, 874.0, 387.0, 743.0, 233.0, 834.0, 870.0, 685.0, 342.0, 79.0, 270.0, 314.0, 42.0, 364.0, 902.0, 755.0, 248.0, 815.0, 4.0, 21.0, 423.0, 302.0], 'PHASE:PhaseSubmitVote': True}
[OUTPUT] 14:27:36 02/04/2022 
  <-{'output': {'vote': True, 'jump_to_next': False}}

[INPUT] 14:27:37 02/04/2022 
  ->{}
[CACHE] 14:27:37 02/04/2022 
  ->{'PIPELINE:LOCAL': {'index': 0, 'iterations': {'PhaseSubmitVote': 1, 'PhaseSaveResult': 0}}, 'input_args': {'data_source': 'data_file.txt'}, 'next_phase': 'PhaseSubmitVote', 'data_index': 1, 'data': [712.0, 309.0, 574.0, 838.0, 296.0, 349.0, 781.0, 749.0, 360.0, 702.0, 253.0, 831.0, 911.0, 14.0, 259.0, 805.0, 494.0, 501.0, 549.0, 624.0, 919.0, 836.0, 362.0, 373.0, 563.0, 134.0, 610.0, 875.0, 328.0, 299.0, 874.0, 387.0, 743.0, 233.0, 834.0, 870.0, 685.0, 342.0, 79.0, 270.0, 314.0, 42.0, 364.0, 902.0, 755.0, 248.0, 815.0, 4.0, 21.0, 423.0, 302.0], 'PHASE:PhaseSubmitVote': True}
  <-{'PIPELINE:LOCAL': {'index': 0, 'iterations': {'PhaseSubmitVote': 2, 'PhaseSaveResult': 0}}, 'input_args': {'data_source': 'data_file.txt'}, 'next_phase': 'PhaseSubmitVote', 'data_index': 2, 'data': [712.0, 309.0, 574.0, 838.0, 296.0, 349.0, 781.0, 749.0, 360.0, 702.0, 253.0, 831.0, 911.0, 14.0, 259.0, 805.0, 494.0, 501.0, 549.0, 624.0, 919.0, 836.0, 362.0, 373.0, 563.0, 134.0, 610.0, 875.0, 328.0, 299.0, 874.0, 387.0, 743.0, 233.0, 834.0, 870.0, 685.0, 342.0, 79.0, 270.0, 314.0, 42.0, 364.0, 902.0, 755.0, 248.0, 815.0, 4.0, 21.0, 423.0, 302.0], 'PHASE:PhaseSubmitVote': True}
[OUTPUT] 14:27:37 02/04/2022 
  <-{'output': {'vote': False, 'jump_to_next': False}}

[INPUT] 14:27:37 02/04/2022 
  ->{}
[CACHE] 14:27:37 02/04/2022 
  ->{'PIPELINE:LOCAL': {'index': 0, 'iterations': {'PhaseSubmitVote': 2, 'PhaseSaveResult': 0}}, 'input_args': {'data_source': 'data_file.txt'}, 'next_phase': 'PhaseSubmitVote', 'data_index': 2, 'data': [712.0, 309.0, 574.0, 838.0, 296.0, 349.0, 781.0, 749.0, 360.0, 702.0, 253.0, 831.0, 911.0, 14.0, 259.0, 805.0, 494.0, 501.0, 549.0, 624.0, 919.0, 836.0, 362.0, 373.0, 563.0, 134.0, 610.0, 875.0, 328.0, 299.0, 874.0, 387.0, 743.0, 233.0, 834.0, 870.0, 685.0, 342.0, 79.0, 270.0, 314.0, 42.0, 364.0, 902.0, 755.0, 248.0, 815.0, 4.0, 21.0, 423.0, 302.0], 'PHASE:PhaseSubmitVote': True}
  <-{'PIPELINE:LOCAL': {'index': 0, 'iterations': {'PhaseSubmitVote': 3, 'PhaseSaveResult': 0}}, 'input_args': {'data_source': 'data_file.txt'}, 'next_phase': 'PhaseSubmitVote', 'data_index': 3, 'data': [712.0, 309.0, 574.0, 838.0, 296.0, 349.0, 781.0, 749.0, 360.0, 702.0, 253.0, 831.0, 911.0, 14.0, 259.0, 805.0, 494.0, 501.0, 549.0, 624.0, 919.0, 836.0, 362.0, 373.0, 563.0, 134.0, 610.0, 875.0, 328.0, 299.0, 874.0, 387.0, 743.0, 233.0, 834.0, 870.0, 685.0, 342.0, 79.0, 270.0, 314.0, 42.0, 364.0, 902.0, 755.0, 248.0, 815.0, 4.0, 21.0, 423.0, 302.0], 'PHASE:PhaseSubmitVote': True}
[OUTPUT] 14:27:37 02/04/2022 
  <-{'output': {'vote': True, 'jump_to_next': False}}
...

Sample logs from remote

[INPUT] 14:27:37 02/04/2022 
  ->{'local0': {'vote': True, 'jump_to_next': False}, 'local1': {'vote': False, 'jump_to_next': False}, 'local2': {'vote': False, 'jump_to_next': False}, 'local3': {'vote': False, 'jump_to_next': False}}
[CACHE] 14:27:37 02/04/2022 
  ->{'PIPELINE:REMOTE': {'index': 0, 'iterations': {'PhaseCollectVote': 0, 'PhaseSendGlobalResults': 0, 'PhaseEndWithSuccess': 0}}}
  <-{'PIPELINE:REMOTE': {'index': 0, 'iterations': {'PhaseCollectVote': 1, 'PhaseSendGlobalResults': 0, 'PhaseEndWithSuccess': 0}}, 'input_args': {'local0': {'vote': True, 'jump_to_next': False}, 'local1': {'vote': False, 'jump_to_next': False}, 'local2': {'vote': False, 'jump_to_next': False}, 'local3': {'vote': False, 'jump_to_next': False}}, 'next_phase': 'PhaseCollectVote', 'vote_ballot': [[1, 3]], 'PHASE:PhaseCollectVote': True}
[OUTPUT] 14:27:37 02/04/2022 
  <-{'output': {}, 'success': False}

[INPUT] 14:27:37 02/04/2022 
  ->{'local0': {'vote': False, 'jump_to_next': False}, 'local2': {'vote': True, 'jump_to_next': False}, 'local1': {'vote': True, 'jump_to_next': False}, 'local3': {'vote': True, 'jump_to_next': False}}
[CACHE] 14:27:37 02/04/2022 
  ->{'PIPELINE:REMOTE': {'index': 0, 'iterations': {'PhaseCollectVote': 1, 'PhaseSendGlobalResults': 0, 'PhaseEndWithSuccess': 0}}, 'input_args': {'local0': {'vote': True, 'jump_to_next': False}, 'local1': {'vote': False, 'jump_to_next': False}, 'local2': {'vote': False, 'jump_to_next': False}, 'local3': {'vote': False, 'jump_to_next': False}}, 'next_phase': 'PhaseCollectVote', 'vote_ballot': [[1, 3]], 'PHASE:PhaseCollectVote': True}
  <-{'PIPELINE:REMOTE': {'index': 0, 'iterations': {'PhaseCollectVote': 2, 'PhaseSendGlobalResults': 0, 'PhaseEndWithSuccess': 0}}, 'input_args': {'local0': {'vote': True, 'jump_to_next': False}, 'local1': {'vote': False, 'jump_to_next': False}, 'local2': {'vote': False, 'jump_to_next': False}, 'local3': {'vote': False, 'jump_to_next': False}}, 'next_phase': 'PhaseCollectVote', 'vote_ballot': [[1, 3], [3, 1]], 'PHASE:PhaseCollectVote': True}
[OUTPUT] 14:27:37 02/04/2022 
  <-{'output': {}, 'success': False}

[INPUT] 14:27:37 02/04/2022 
  ->{'local0': {'vote': True, 'jump_to_next': False}, 'local3': {'vote': True, 'jump_to_next': False}, 'local2': {'vote': True, 'jump_to_next': False}, 'local1': {'vote': True, 'jump_to_next': False}}
[CACHE] 14:27:37 02/04/2022 
  ->{'PIPELINE:REMOTE': {'index': 0, 'iterations': {'PhaseCollectVote': 2, 'PhaseSendGlobalResults': 0, 'PhaseEndWithSuccess': 0}}, 'input_args': {'local0': {'vote': True, 'jump_to_next': False}, 'local1': {'vote': False, 'jump_to_next': False}, 'local2': {'vote': False, 'jump_to_next': False}, 'local3': {'vote': False, 'jump_to_next': False}}, 'next_phase': 'PhaseCollectVote', 'vote_ballot': [[1, 3], [3, 1]], 'PHASE:PhaseCollectVote': True}
  <-{'PIPELINE:REMOTE': {'index': 0, 'iterations': {'PhaseCollectVote': 3, 'PhaseSendGlobalResults': 0, 'PhaseEndWithSuccess': 0}}, 'input_args': {'local0': {'vote': True, 'jump_to_next': False}, 'local1': {'vote': False, 'jump_to_next': False}, 'local2': {'vote': False, 'jump_to_next': False}, 'local3': {'vote': False, 'jump_to_next': False}}, 'next_phase': 'PhaseCollectVote', 'vote_ballot': [[1, 3], [3, 1], [4, 0]], 'PHASE:PhaseCollectVote': True}
[OUTPUT] 14:27:37 02/04/2022 
  <-{'output': {}, 'success': False}
...

Development notes:

  • Make sure you have:
    • docker installed and running.
    • nodejs installed.
    • coinstac-simulator package installed. npm install --global coinstac-simulator
  • Must set debug=False while deploying.
  • Backward compatible to the older library(compspecVersion=1):
    • Add the following snippet at the end of local and remote pipeline scripts.
    if __name__ == "__main__":
        local.to_stdout()
    
    • Use version 1.0 compspec format.
    • Comment out line CMD ["python", "entry.py"] in the Dockerfile.
    • You can also use a remote debugger in pycharm as here.

Thanks!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coinstac-computation-1.0.2.tar.gz (10.7 kB view details)

Uploaded Source

File details

Details for the file coinstac-computation-1.0.2.tar.gz.

File metadata

  • Download URL: coinstac-computation-1.0.2.tar.gz
  • Upload date:
  • Size: 10.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for coinstac-computation-1.0.2.tar.gz
Algorithm Hash digest
SHA256 4dc87590ba42005aafd42360419c2e0cccb2c0febb0aa5fad7db50cccc8b9f3d
MD5 bfd2df4f5a6e5cd6d0ace70539efc5f1
BLAKE2b-256 ea997e70962defea4d05e5d9ab73b9f941890481f0846d3fbe7bc777e58936ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page