Skip to main content

No project description provided

Project description

Compositional Linear Algebra (CoLA)

Documentation tests codecov PyPI version Paper Downloads

CoLA is a framework for scalable linear algebra, automatically exploiting the structure often found in machine learning problems and beyond. CoLA natively supports PyTorch, JAX, as well as (limited) NumPy if JAX is not installed.

Installation

pip install cola-ml

Features in CoLA

  • Large scale linear algebra routines for solve(A,b), eig(A), logdet(A), exp(A), trace(A), diag(A), sqrt(A).
  • Provides (user extendible) compositional rules to exploit structure through multiple dispatch.
  • Has memory-efficient autodiff rules for iterative algorithms.
  • Works with PyTorch or JAX, supporting GPU hardware acceleration.
  • Supports operators with complex numbers and low precision.
  • Provides linear algebra operations for both symmetric and non-symmetric matrices.

See https://cola.readthedocs.io/en/latest/ for our full documentation and many examples.

Quick start guide

  1. LinearOperators. The core object in CoLA is the LinearOperator. You can add and subtract them +, -, multiply by constants *, /, matrix multiply them @ and combine them in other ways: kron, kronsum, block_diag etc.
import jax.numpy as jnp
import cola

A = cola.ops.Diagonal(jnp.arange(5) + .1)
B = cola.ops.Dense(jnp.array([[2., 1.], [-2., 1.1], [.01, .2]]))
C = B.T @ B
D = C + 0.01 * cola.ops.I_like(C)
E = cola.ops.Kronecker(A, cola.ops.Dense(jnp.ones((2, 2))))
F = cola.ops.BlockDiag(E, D)

v = jnp.ones(F.shape[-1])
print(F @ v)
[0.2       0.2       2.2       2.2       4.2       4.2       6.2
 6.2       8.2       8.2       7.8       2.1    ]
  1. Performing Linear Algebra. With these objects we can perform linear algebra operations even when they are very big.
print(cola.linalg.trace(F))
Q = F.T @ F + 1e-3 * cola.ops.I_like(F)
b = cola.linalg.inv(Q) @ v
print(jnp.linalg.norm(Q @ b - v))
print(cola.linalg.eig(F, k=F.shape[0])[0][:5])
print(cola.linalg.sqrt(A))
31.2701
0.0010193728
[ 2.0000000e-01+0.j  0.0000000e+00+0.j  2.1999998e+00+0.j
 -1.1920929e-07+0.j  4.1999998e+00+0.j]
diag([0.31622776 1.0488088  1.4491377  1.7606816  2.0248456 ])

For many of these functions, if we know additional information about the matrices we can annotate them to enable the algorithms to run faster.

Qs = cola.SelfAdjoint(Q)
%timeit cola.linalg.inv(Q) @ v
%timeit cola.linalg.inv(Qs) @ v
  1. JAX and PyTorch. We support both ML frameworks.
import torch
A = cola.ops.Dense(torch.Tensor([[1., 2.], [3., 4.]]))
print(cola.linalg.trace(cola.kron(A, A)))

import jax.numpy as jnp
A = cola.ops.Dense(jnp.array([[1., 2.], [3., 4.]]))
print(cola.linalg.trace(cola.kron(A, A)))
tensor(25.)
25.0

CoLA also supports autograd (and jit):

from jax import grad, jit, vmap


def myloss(x):
    A = cola.ops.Dense(jnp.array([[1., 2.], [3., x]]))
    return jnp.ones(2) @ cola.linalg.inv(A) @ jnp.ones(2)


g = jit(vmap(grad(myloss)))(jnp.array([.5, 10.]))
print(g)
[-0.06611571 -0.12499995]

Citing us

If you use CoLA, please cite the following paper:

Andres Potapczynski, Marc Finzi, Geoff Pleiss, and Andrew Gordon Wilson. "CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra." 2023.

@article{potapczynski2023cola,
  title={{CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra}},
  author={Andres Potapczynski and Marc Finzi and Geoff Pleiss and Andrew Gordon Wilson},
  journal={arXiv preprint arXiv:2309.03060},
  year={2023}
}

Features implemented

Linear Algebra inverse eig diag trace logdet exp sqrt f(A) SVD pseudoinverse
Implementation
LinearOperators Diag BlockDiag Kronecker KronSum Sparse Jacobian Hessian Fisher Concatenated Triangular FFT Tridiagonal
Implementation
Annotations SelfAdjoint PSD Unitary
Implementation
Backends PyTorch JAX NumPy
Implementation Most operations

Contributing

See the contributing guidelines docs/CONTRIBUTING.md for information on submitting issues and pull requests.

CoLA is Apache 2.0 licensed.

Support and contact

Please raise an issue if you find a bug or slow performance when using CoLA.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cola_ml-0.0.6.tar.gz (16.6 MB view details)

Uploaded Source

Built Distribution

cola_ml-0.0.6-py3-none-any.whl (70.0 kB view details)

Uploaded Python 3

File details

Details for the file cola_ml-0.0.6.tar.gz.

File metadata

  • Download URL: cola_ml-0.0.6.tar.gz
  • Upload date:
  • Size: 16.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for cola_ml-0.0.6.tar.gz
Algorithm Hash digest
SHA256 a1f47fb08dea8af0f342ad0872f589b7744177982a2d7f8cb8f2b443e2747efa
MD5 389f0dfb3bdac702b2ffa8cb34a95e09
BLAKE2b-256 67fd561b46c6f8f0837cb9fcf8af131e0ad2895d8b9bdf47b778a0ecd6f4a4ae

See more details on using hashes here.

File details

Details for the file cola_ml-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: cola_ml-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 70.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for cola_ml-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 0931d7734fe53ef9c6f9c739e5596de1a0d1b85bd7869ddef37129d8eeffad13
MD5 57cdd195bddd84f536cd3c5912688cca
BLAKE2b-256 aeb9d943a37d4215290f5b64b89526c81688ace6b70c14f08cf454ff547a9249

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page