Skip to main content

The Standalone Fetch AI Collective Learning Framework

Project description

Welcome to the Fetch.ai Collective Learning

Colearn is a library that enables privacy-preserving decentralized machine learning tasks on the FET network.

This blockchain-mediated collective learning system enables multiple stakeholders to build a shared machine learning model without needing to rely on a central authority. This library is currently in development.

The collective learning protocol allows learners to collaborate on training a model without requiring trust between the participants. Learners vote on updates to the model, and only updates which pass the quality threshold are accepted. This makes the system robust to attempts to interfere with the model by providing bad updates. For more details on the collective learning system see here

Current Version

We have released v.0.2 of the Colearn Machine Learning Interface, the first version of an interface that will allow developers to prepare for future releases. Together with the interface we provide a simple backend for local experiments. This is the first backend with upcoming blockchain ledger based backends to follow.
Future releases will use similar interfaces so that learners built with the current system will work on a different backend that integrates a distributed ledger and provides other improvements. The current framework will then be used mainly for model development and debugging. We invite all users to experiment with the framework, develop their own models, and provide feedback!

See the documentation at fetchai.github.io/colearn/

Installation

To use the latest stable release we recommend installing the package from PyPi

To install with support for Keras and Pytorch:

pip install colearn[all]

To install with just support for Keras or Pytorch:

pip install colearn[keras]
pip install colearn[pytorch]

Running the examples

Download the stand-alone examples

wget https://raw.githubusercontent.com/fetchai/colearn/master/examples/keras_cifar.py
wget https://raw.githubusercontent.com/fetchai/colearn/master/examples/keras_fraud.py
wget https://raw.githubusercontent.com/fetchai/colearn/master/examples/keras_mnist.py
wget https://raw.githubusercontent.com/fetchai/colearn/master/examples/keras_mnist_diffpriv.py
wget https://raw.githubusercontent.com/fetchai/colearn/master/examples/keras_xray.py
wget https://raw.githubusercontent.com/fetchai/colearn/master/examples/mli_fraud.py
wget https://raw.githubusercontent.com/fetchai/colearn/master/examples/mli_random_forest_iris.py
wget https://raw.githubusercontent.com/fetchai/colearn/master/examples/pytorch_cifar.py
wget https://raw.githubusercontent.com/fetchai/colearn/master/examples/pytorch_covid.py
wget https://raw.githubusercontent.com/fetchai/colearn/master/examples/pytorch_mnist.py
wget https://raw.githubusercontent.com/fetchai/colearn/master/examples/pytorch_mnist_diffpriv.py
wget https://raw.githubusercontent.com/fetchai/colearn/master/examples/pytorch_xray.py
  • Or they can be accessed from colearn/examples by cloning colearn repo

Run any example depending on what machine learning library support you've installed

# for colearn[keras] or colearn[all]
python3 keras_mnist.py
# for colearn[pytorch] or colearn[all]
python3 pytorch_mnist.py

For more instructions see the documentation at fetchai.github.io/colearn/installation

After installation we recommend running a demo , or seeing the examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

colearn-0.2.4.tar.gz (25.4 kB view details)

Uploaded Source

Built Distribution

colearn-0.2.4-py3-none-any.whl (52.8 kB view details)

Uploaded Python 3

File details

Details for the file colearn-0.2.4.tar.gz.

File metadata

  • Download URL: colearn-0.2.4.tar.gz
  • Upload date:
  • Size: 25.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.5

File hashes

Hashes for colearn-0.2.4.tar.gz
Algorithm Hash digest
SHA256 394bf7e950c71b14323a2ad24b7670804a3cd79e3578a54a3cb4b7dfbe1e0bd7
MD5 cc22faf4a2ba4ac9b9321a181bf788da
BLAKE2b-256 6b0c30e4cfcd98612545c8eccd4d3d14cadf6fc74808c57374f7ba31dbf5572b

See more details on using hashes here.

File details

Details for the file colearn-0.2.4-py3-none-any.whl.

File metadata

  • Download URL: colearn-0.2.4-py3-none-any.whl
  • Upload date:
  • Size: 52.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.5

File hashes

Hashes for colearn-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 9b4b65a452e0a9c823e078c95987f3cb6563b1bf7bf9dc17d61220b3dc48e228
MD5 1783119503487091c33bf632ca3bab90
BLAKE2b-256 bfeebd31e21560705a4eca4c1bd6c9768183e7f0d71e25fe3b8015b2ac7516b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page