Skip to main content

The package contains statsitical tests such as one-sample, two-sample and paired t-test. Residual analysis and plotting are also supported.

Project description

https://raw.githubusercontent.com/MMateo1120/colibripy/89b4489a8324c3b267e2c63de81654c4017636ea/colibri_pic.svg

Colibripy is a python package for data evaluation using statistical tools. For now, the following methods are available:
one-sample t-test
two-sample t-test
paired t-test


Examples


Installation

User installation

To install colibripy and update dependencies use pip:

pip install -U colibripy

colibripy 1.0.0 requires Python 3.12 or newer.

Dependencies

colibripy requires:

  • matplotlib >= 3.9.1

  • numpy >= 2.0.1

  • pandas >= 2.2.2

  • pytest >= 8.3.2

  • scikit_learn >= 1.5.1

  • scipy >= 1.14.0

  • seaborn >= 0.13.2

  • statsmodels >= 0.14.2

  • tabulate >= 0.9.0


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

colibripy-1.0.0.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

colibripy-1.0.0-py3-none-any.whl (8.6 kB view details)

Uploaded Python 3

File details

Details for the file colibripy-1.0.0.tar.gz.

File metadata

  • Download URL: colibripy-1.0.0.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Windows/10

File hashes

Hashes for colibripy-1.0.0.tar.gz
Algorithm Hash digest
SHA256 660486770c0d868298d7e7ac36a9b644d3c77d362682c9a40117dea0441551b2
MD5 1aeac402bbf17a9fa57e1583d3de442c
BLAKE2b-256 a22ec309f56f010809385112e9f13cb9982d1c1092b87317bb20c54b1cb21a7d

See more details on using hashes here.

File details

Details for the file colibripy-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: colibripy-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 8.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Windows/10

File hashes

Hashes for colibripy-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 97cd1a64b321277b3a41f6e67bed62d1a9e36322ecd5ac4f984c8cac66c0ea1f
MD5 4c07fd5c7b35b75e281228e2b35bcf20
BLAKE2b-256 2c76df4498478f6db26ccd0f15e6ee2add93c7b63cd61b8259071a198f9d6c0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page