Library that colorizes gray STEM imagess using deep convolutional neural networks.
Project description
Color Spray
STEM images colorization using Deep Convolutional Neural Networks.
Installing
A. Install and update using pip:
pip3 install color-spray
Or
git checkout https://github.com/fengwang/color_spray.git
cd color_spray
python3 -m pip install -e .
B. Dowload pretrained model files from https://drive.google.com/drive/folders/1dl-iNgROmSv71EpzNalh97zksKIBc90u?usp=sharing
, place them in your home folder, under path .color_spray/model
.
Usage
Command line:
color_spray INPUT_GRAY_IMAGE_PATH OUTPUT_RGB_IMAGE_PATH
Using Python API:
# uncomment the follow three lines if you have a Nvidia GPU but you do not want to enable it.
#import os
#os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
#os.environ["CUDA_VISIBLE_DEVICES"]=''
from color_spray import color_spray
rgb_image = color_spray( './a_gray_image.png', './an_rgb_image.png' )
Details
- The training images are downloaded from PEXEL.
License
- BSD
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
color_spray-0.1.0.tar.gz
(816.3 kB
view details)
Built Distribution
File details
Details for the file color_spray-0.1.0.tar.gz
.
File metadata
- Download URL: color_spray-0.1.0.tar.gz
- Upload date:
- Size: 816.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 52ae5c616e30403386d5e096fb767ab59646b13eb08fdcc3853fa2d0877d0c54 |
|
MD5 | 6c2460042dbf434eb9a348636599e772 |
|
BLAKE2b-256 | 570f49e0e53692cfda1878ccb1ec58c27e957b3e9670acf433467723ac754129 |
File details
Details for the file color_spray-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: color_spray-0.1.0-py3-none-any.whl
- Upload date:
- Size: 5.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 90aa6c15f65950e7ac289265fad6fd7a7a29ddb0d1a7e37197efc3e71b01143f |
|
MD5 | 601d37bdcaeab6861b7ff82f2a3a27fd |
|
BLAKE2b-256 | ea9d0e599d8f4a7b43ab417a8eb6edb4533ffbf0ee8086421f5fc70261ec5f57 |