Do color correction of images using machine learning.
Project description
ColorCorrectionML
ColorCorrectionML is a Python package for color correction of images using machine learning. It uses ML regression methods (linear, least sqaure, and partial least squares regression) to learn the color correction function from a training image with a color checker. The learned function is then applied to correct the color of a test image.
Installation
pip install colorcorrectionML
Usage
from ColorCorrectionML import ColorCorrectionML
import cv2
img = cv2.imread('Images/img2.png')
cc = ColorCorrectionML(img, chart='Classic', illuminant='D50')
method = 'pls' # 'linear', 'lstsq', 'pls'
# for linear regression, least square regression, and partial least square regression respectively
show = True
kwargs = {
'method': method,
'degree': 3, # degree of polynomial
'interactions_only': False, # only interactions terms,
'ncomp': 10, # number of components for PLS only
'max_iter': 5000, # max iterations for PLS only
'white_balance_mtd': 0 # 0: no white balance, 1: learningBasedWB, 2: simpleWB, 3: grayWorldWB,
}
M, patch_size = cc.compute_correction(
show=show,
**kwargs
)
# resize img by 2
# img = cv2.resize(img, (0,0), fx=0.3, fy=0.3, interpolation=cv2.INTER_AREA)
img_corr = cc.correct_img(img, show=True)
# img_corr = cc.Parallel_correct_img(img, chunks_=50000, show=True)
Example results
Scatter plot of the original image and the corrected image color values
Color correction results
TODO
- Add other reference color values (D55, D65, D70, D75)
- Add other color charts (ColorChecker24, ColorCheckerSG, ColorCheckerDC)
- Add other color spaces (CIELab, XYZ, etc.)
- Add other regression methods (Ridge, Lasso, ElasticNet, etc.)
- Refine the white balance methods
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file colorcorrectionML-0.0.2.1.tar.gz
.
File metadata
- Download URL: colorcorrectionML-0.0.2.1.tar.gz
- Upload date:
- Size: 6.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 576a91a84e605bc9ed16fef8ab889a7b8ce970dd346db3f263684d67b3316e1b |
|
MD5 | b63f2b631811638533f85d9c856e0837 |
|
BLAKE2b-256 | 3c6421b299ab50da533c204f2bb4f8cad181d890cb92f03733907815f896effc |
File details
Details for the file colorcorrectionML-0.0.2.1-py3-none-any.whl
.
File metadata
- Download URL: colorcorrectionML-0.0.2.1-py3-none-any.whl
- Upload date:
- Size: 7.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3ed17dc786c8dc11f66da728063a7d13495ce79d861cd6e792031a0f1e50bcc4 |
|
MD5 | 81c3de9ef5db38da737e4b7bb0185d1a |
|
BLAKE2b-256 | 3904048a6d3e3d2cc26df26e5810b5b7f0859b33bfe673da0b508b6188bd9a1e |