Skip to main content

Got a spectra? Use this to find what is the observed colour.

Project description

coloured_spectra

Got a spectra? Use this to find the observed colour!

Works great when applied to a single spectra. Using this for hyperspectral though... this Python implementation is too slow to be practical. (Can be magnitudes faster if coded in Julia)

Documentation site: https://yiweimao.github.io/coloured_spectra/

Blog post: https://yiweimao.github.io/blog/colour_of_spectra/

Install

pip install coloured-spectra

Examples

Find the observed colour of a blackbody at 6500 K.

from coloured_spectra.coloured_spectra import *
import numpy as np
import pickle
import matplotlib.pyplot as plt
import cv2
bb = Blackbody(5778)
bb.plot()

png

def show_blackbody_colour(T_K):
    bb = Blackbody(T_K,np.linspace(380,750))

    sRGB = spectra2sRGB(bb.λ_nm,bb.B_λT)

    # Due to normalisation choices, the brightness can change depending on the spectra
    # show the colour at max brightness
    HSV = cv2.cvtColor(np.reshape(sRGB,(1,1,3)), cv2.COLOR_RGB2HSV_FULL)
    HSV[0,0,2] = 255
    RGB = cv2.cvtColor(HSV, cv2.COLOR_HSV2RGB_FULL)

    plot_colour(RGB)

This approximates the colour of the Sun with a blackbody temperature of 5778 K.

show_blackbody_colour(5778)

png

show_blackbody_colour(11000) # what about the star Rigel?

png

If you have a hyperspectral line, you can colour it in by the observed colour. For this, the invisible UV and NIR is painted white on top of a black background. This look up table spectrum is:

plot_hsv_LUT_spectrum()

png

lines_nm = [254,436,546,764,405,365,578,750,738,697,812,772,912,801,842,795,706,826,852,727] # approx sorted by emission strength
img = np.zeros((100,1000))
wavelengths = np.linspace(350,850,1000)

strength = 1.
for line in lines_nm: 
    indx = np.sum(wavelengths<line)
    if indx > 0 and indx < 1000:
        img[:,indx-2:indx+2] = strength
        strength -= 0.05

plt.imshow(img,cmap="gray",extent=[np.min(wavelengths),np.max(wavelengths),0,np.shape(img)[0]])
plt.xlabel("wavelength (nm)")
Text(0.5, 0, 'wavelength (nm)')

png

You can see the emission lines have been coloured.

colour_hyperspectral_line(wavelengths,img)
100%|██████████| 100/100 [00:01<00:00, 52.00it/s]

png

You can also return a column of observed colour given a hyperspectral line

hyperspec_line2colour(wavelengths,img)
100%|██████████| 100/100 [00:03<00:00, 31.57it/s]

png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coloured_spectra-0.0.10.tar.gz (2.0 MB view details)

Uploaded Source

Built Distribution

coloured_spectra-0.0.10-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file coloured_spectra-0.0.10.tar.gz.

File metadata

  • Download URL: coloured_spectra-0.0.10.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for coloured_spectra-0.0.10.tar.gz
Algorithm Hash digest
SHA256 f480eb5519eb0179f9d5ece6ffc051e68e3976647499ebddb1e734b3ebadd710
MD5 52e408f85001134fb46756025e5958e4
BLAKE2b-256 933ea4657c828862a6f5655d8c9b587f28e3703557be419df4eb22db646daf77

See more details on using hashes here.

File details

Details for the file coloured_spectra-0.0.10-py3-none-any.whl.

File metadata

  • Download URL: coloured_spectra-0.0.10-py3-none-any.whl
  • Upload date:
  • Size: 11.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for coloured_spectra-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 8732202aacaef291e6dc610ae267acd47c7b63d119e120777bd3caae1211472d
MD5 a8b418212349bea838c370b2a2580ae9
BLAKE2b-256 895f19836da6467208fc0f217bc3d6b5f26d2d25375699a623339f7518abf157

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page