Skip to main content

Got a spectra? Use this to find what is the observed colour.

Project description

coloured_spectra

Got a spectra? Use this to find the observed colour!

Works great when applied to a single spectra. Using this for hyperspectral though... this Python implementation is too slow to be practical. (Can be magnitudes faster if coded in Julia)

Documentation site: https://yiweimao.github.io/coloured_spectra/

Install

pip install coloured_spectra

Examples

Find the observed colour of a blackbody at 6500 K.

from coloured_spectra import *
import numpy as np
import pickle
import matplotlib.pyplot as plt
import cv2
bb = Blackbody(5778)
bb.plot()

png

def show_blackbody_colour(T_K):
    bb = Blackbody(T_K,np.linspace(380,750))

    sRGB = spectra2sRGB(bb.λ_nm,bb.B_λT)

    # Due to normalisation choices, the brightness can change depending on the spectra
    # show the colour at max brightness
    HSV = cv2.cvtColor(np.reshape(sRGB,(1,1,3)), cv2.COLOR_RGB2HSV_FULL)
    HSV[0,0,2] = 255
    RGB = cv2.cvtColor(HSV, cv2.COLOR_HSV2RGB_FULL)

    plot_colour(RGB)

This approximates the colour of the Sun with a blackbody temperature of 5778 K.

show_blackbody_colour(5778)

png

show_blackbody_colour(11000) # what about the star Rigel?

png

If you have a hyperspectral line, you can colour it in by the observed colour. For this, the invisible UV and NIR is painted white on top of a black background. This look up table spectrum is:

plot_hsv_LUT_spectrum()

png

# load a hyperspectral line (imaged HgAr lamp)
with open('../wave_cal.pkl','rb') as handle:
    img = np.float32(np.rot90(pickle.load(handle),1))

    # get rid of sensor abnormalities
    img[669,467] = img[670,467]
    img[587,1174] = img[588,1174]

    img /= np.max(img)

plt.imshow(img,cmap='gray',extent=[400,850,0,np.shape(img)[0]])
plt.xlabel("wavelengths (nm)")
plt.ylabel("cross-track")
plt.colorbar()
<matplotlib.colorbar.Colorbar at 0x118865c10>

png

You can see the emission lines have been coloured.

colour_hyperspectral_line(np.linspace(400,850,2064),img)
100%|██████████| 772/772 [00:41<00:00, 18.53it/s]

png

You can also return a column of observed colour given a hyperspectral line

hyperspec_line2colour(np.linspace(400,850,2064),img)
100%|██████████| 772/772 [01:07<00:00, 11.46it/s]

png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coloured_spectra-0.0.2.tar.gz (12.0 kB view details)

Uploaded Source

Built Distribution

coloured_spectra-0.0.2-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file coloured_spectra-0.0.2.tar.gz.

File metadata

  • Download URL: coloured_spectra-0.0.2.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for coloured_spectra-0.0.2.tar.gz
Algorithm Hash digest
SHA256 9d5c10e0b23c5120fd7b5796d576126ac65a9bb31e0a235cec4a20e9034eda2b
MD5 db3f6791824b35838880d6fb22a54833
BLAKE2b-256 7486b1c5981fdacf592508ebfc8a3c7f9839e9161e53460bbd19bc063956dbda

See more details on using hashes here.

File details

Details for the file coloured_spectra-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: coloured_spectra-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 10.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for coloured_spectra-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2f5c09f74b6532a3e444366f0bb001556dde5a849294e48e086506ab60f38777
MD5 e103b8d27283d98fab3776bb6d2417ec
BLAKE2b-256 82282920764c644a18ff97c02f1a9f18a582cd334ffa18440d6762fc28f1de06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page