Skip to main content

Got a spectra? Use this to find what is the observed colour.

Project description

coloured_spectra

Got a spectra? Use this to find the observed colour!

Works great when applied to a single spectra. Using this for hyperspectral though... this Python implementation is too slow to be practical. (Can be magnitudes faster if coded in Julia)

Documentation site: https://yiweimao.github.io/coloured_spectra/

Blog post: https://yiweimao.github.io/blog/colour_of_spectra/

Install

pip install coloured-spectra

Examples

Find the observed colour of a blackbody at 6500 K.

from coloured_spectra.coloured_spectra import *
import numpy as np
import pickle
import matplotlib.pyplot as plt
import cv2
bb = Blackbody(5778)
bb.plot()

png

def show_blackbody_colour(T_K):
    bb = Blackbody(T_K,np.linspace(380,750))

    sRGB = spectra2sRGB(bb.λ_nm,bb.B_λT)

    # Due to normalisation choices, the brightness can change depending on the spectra
    # show the colour at max brightness
    HSV = cv2.cvtColor(np.reshape(sRGB,(1,1,3)), cv2.COLOR_RGB2HSV_FULL)
    HSV[0,0,2] = 255
    RGB = cv2.cvtColor(HSV, cv2.COLOR_HSV2RGB_FULL)

    plot_colour(RGB)

This approximates the colour of the Sun with a blackbody temperature of 5778 K.

show_blackbody_colour(5778)

png

show_blackbody_colour(11000) # what about the star Rigel?

png

If you have a hyperspectral line, you can colour it in by the observed colour. For this, the invisible UV and NIR is painted white on top of a black background. This look up table spectrum is:

plot_hsv_LUT_spectrum()

png

lines_nm = [254,436,546,764,405,365,578,750,738,697,812,772,912,801,842,795,706,826,852,727] # approx sorted by emission strength
img = np.zeros((100,1000))
wavelengths = np.linspace(350,850,1000)

strength = 1.
for line in lines_nm: 
    indx = np.sum(wavelengths<line)
    if indx > 0 and indx < 1000:
        img[:,indx-2:indx+2] = strength
        strength -= 0.05

plt.imshow(img,cmap="gray",extent=[np.min(wavelengths),np.max(wavelengths),0,np.shape(img)[0]])
plt.xlabel("wavelength (nm)")
Text(0.5, 0, 'wavelength (nm)')

png

You can see the emission lines have been coloured.

colour_hyperspectral_line(wavelengths,img)
100%|██████████| 100/100 [00:01<00:00, 52.00it/s]

png

You can also return a column of observed colour given a hyperspectral line

hyperspec_line2colour(wavelengths,img)
100%|██████████| 100/100 [00:03<00:00, 31.57it/s]

png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coloured_spectra-0.0.9.tar.gz (2.0 MB view details)

Uploaded Source

Built Distribution

coloured_spectra-0.0.9-py3-none-any.whl (11.0 kB view details)

Uploaded Python 3

File details

Details for the file coloured_spectra-0.0.9.tar.gz.

File metadata

  • Download URL: coloured_spectra-0.0.9.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for coloured_spectra-0.0.9.tar.gz
Algorithm Hash digest
SHA256 59a64344ae486f2b8d7dcacf5b769988edb4f4e7ef27eb05729723ec0c1abd77
MD5 1d15e022631b50262359766f11d52f5e
BLAKE2b-256 927031ce7327fa55df55abe2a84a58bff4a761773ef99f25d752080f60bdea13

See more details on using hashes here.

File details

Details for the file coloured_spectra-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: coloured_spectra-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 11.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for coloured_spectra-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 d5fd8625b9fd35cede74c04570ac67bbdce1fd1f37b57ea822313a38f5e89e10
MD5 d2c3653976bb6a13dd1a9023b5c48ef6
BLAKE2b-256 96b68aa7d60538097621f762db67990bb810457bf5dbe1d4f5b89dfbe68f7b30

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page