Skip to main content

A RAG pipeline using ColBERT via RAGatouille

Project description

ColRAG

PyPI version Python Versions License: MIT Downloads GitHub stars GitHub forks GitHub issues GitHub pull-requests GitHub contributors GitHub Workflow Status codecov Documentation Status Maintenance made-with-python Open Source Love svg1 PRs Welcome

ColRAG is a powerful RAG (Retrieval-Augmented Generation) pipeline using ColBERT via RAGatouille. It provides an efficient and effective way to implement retrieval-augmented generation in your projects.

🌟 Features

  • 📚 Efficient document indexing
  • 🚀 Fast and accurate retrieval with reranking as an optional parameter
  • 🔗 Seamless integration with ColBERT and RAGatouille
  • 📄 Support for multiple file formats (PDF, CSV, XLSX, DOCX, HTML, JSON, JSONL, TXT)
  • ⚙️ Customizable retrieval parameters

🛠️ Installation

You can install ColRAG using pip:

pip install colrag

You can also install ColRAG using poetry (recommended):

Using Poetry

If you're using Poetry to manage your project dependencies, you can add ColRAG to your project with:

poetry add colrag

Or if you want to add it to your pyproject.toml manually, you can add the following line under [tool.poetry.dependencies]:

colrag = "^0.1.0"  # Replace with the latest version

Then run:

poetry install

🚀 Quick Start

Here's a simple example to get you started:

from colrag import index_documents, retrieve_and_rerank_documents

# Index your documents
index_path = index_documents("/path/to/your/documents", "my_index")

# Retrieve documents
query = "What is the capital of France?"
results = retrieve_and_rerank_documents(index_path, query)

for result in results:
    print(f"Score: {result['score']}, Content: {result['content'][:100]}...")

📖 Documentation

For more detailed information about ColRAG's features and usage, please refer to our documentation.

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for more details.

📄 License

ColRAG is released under the MIT License. See the LICENSE file for more details.

📚 Citation

If you use ColRAG in your research, please cite it as follows:

@software{colrag,
  author = {Syed Asad},
  title = {ColRAG: A RAG pipeline using ColBERT via RAGatouille},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/syedzaidi-kiwi/ColRAG.git}}
}

📬 Contact

For any questions or feedback, please open an issue on our GitHub repository.

🙏 Acknowledgements


Built with ❤️ by your username

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

colrag-0.1.1.tar.gz (9.9 kB view details)

Uploaded Source

Built Distribution

colrag-0.1.1-py3-none-any.whl (10.6 kB view details)

Uploaded Python 3

File details

Details for the file colrag-0.1.1.tar.gz.

File metadata

  • Download URL: colrag-0.1.1.tar.gz
  • Upload date:
  • Size: 9.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.7 Darwin/23.5.0

File hashes

Hashes for colrag-0.1.1.tar.gz
Algorithm Hash digest
SHA256 3b174b920635256c8a4594d1d3d76f533bd7d3909f0f0b147bc2eb21bd12e64b
MD5 fb50474ce6eb5a7404bc82fae0066373
BLAKE2b-256 ee4d979c3accbbd03548078c1d536ff43e46ce13a81ac2b1999b7e10ca336c5e

See more details on using hashes here.

File details

Details for the file colrag-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: colrag-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 10.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.7 Darwin/23.5.0

File hashes

Hashes for colrag-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 306773949773cf93a180452a52fcfa4f470cf19a01b8f4d5287dcd59c814934b
MD5 5879a4cf2b6bf09903d452a1396bb1ad
BLAKE2b-256 a1d1e11e88132ac9a1d77b332f98bcf66fb969cb7363040a93bcb5a2fd3b1abf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page