Skip to main content

A RAG pipeline using ColBERT via RAGatouille

Project description

ColRAG

PyPI version Python Versions License: MIT Downloads GitHub stars GitHub forks GitHub issues GitHub pull-requests GitHub contributors GitHub Workflow Status codecov Documentation Status Maintenance made-with-python Open Source Love svg1 PRs Welcome

ColRAG is a powerful RAG (Retrieval-Augmented Generation) pipeline using ColBERT via RAGatouille. It provides an efficient and effective way to implement retrieval-augmented generation in your projects.

🌟 Features

  • 📚 Efficient document indexing
  • 🚀 Fast and accurate retrieval with reranking as an optional parameter
  • 🔗 Seamless integration with ColBERT and RAGatouille
  • 📄 Support for multiple file formats (PDF, CSV, XLSX, DOCX, HTML, JSON, JSONL, TXT)
  • ⚙️ Customizable retrieval parameters

🛠️ Installation

You can install ColRAG using pip:

pip install colrag

You can also install ColRAG using poetry (recommended):

Using Poetry

If you're using Poetry to manage your project dependencies, you can add ColRAG to your project with:

poetry add colrag

Or if you want to add it to your pyproject.toml manually, you can add the following line under [tool.poetry.dependencies]:

colrag = "^0.1.0"  # Replace with the latest version

Then run:

poetry install

🚀 Quick Start

Here's a simple example to get you started:

from colrag import index_documents, retrieve_and_rerank_documents

# Index your documents
index_path = index_documents("/path/to/your/documents", "my_index")

# Retrieve documents
query = "What is the capital of France?"
results = retrieve_and_rerank_documents(index_path, query)

for result in results:
    print(f"Score: {result['score']}, Content: {result['content'][:100]}...")

📖 Documentation

For more detailed information about ColRAG's features and usage, please refer to our documentation.

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for more details.

📄 License

ColRAG is released under the MIT License. See the LICENSE file for more details.

📚 Citation

If you use ColRAG in your research, please cite it as follows:

@software{colrag,
  author = {Syed Asad},
  title = {ColRAG: A RAG pipeline using ColBERT via RAGatouille},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/syedzaidi-kiwi/ColRAG.git}}
}

📬 Contact

For any questions or feedback, please open an issue on our GitHub repository.

🙏 Acknowledgements


Built with ❤️ by your username

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

colrag-0.1.2.tar.gz (10.0 kB view details)

Uploaded Source

Built Distribution

colrag-0.1.2-py3-none-any.whl (10.7 kB view details)

Uploaded Python 3

File details

Details for the file colrag-0.1.2.tar.gz.

File metadata

  • Download URL: colrag-0.1.2.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.7 Darwin/23.5.0

File hashes

Hashes for colrag-0.1.2.tar.gz
Algorithm Hash digest
SHA256 2793a0ef22ae327dccffd92ad738040e2f82e559aeadc2a8b59bbfb8eaf7f2b7
MD5 daf06cba2fac40a5b35c50e14c0923cb
BLAKE2b-256 10161b9c4612fcf03ffa35a0e2e1ef959093bdf197ba4ce00acca9ee14129217

See more details on using hashes here.

File details

Details for the file colrag-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: colrag-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 10.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.7 Darwin/23.5.0

File hashes

Hashes for colrag-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8afa598e253b21da89db434a61545b01e5311db1cc5e066a47ce1c44f4bc3558
MD5 64a1d8fe71837200dcf1289064f32b6f
BLAKE2b-256 17e6e4ac14217cb149411f354c8f49f5ab0d3906a1b900e2d77112a1ce9f0efc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page