Skip to main content

A RAG pipeline using ColBERT via RAGatouille

Project description

ColRAG

PyPI version Python Versions License: MIT Downloads GitHub stars GitHub forks GitHub issues GitHub pull-requests GitHub contributors GitHub Workflow Status codecov Documentation Status Maintenance made-with-python Open Source Love svg1 PRs Welcome

ColRAG is a powerful RAG (Retrieval-Augmented Generation) pipeline using ColBERT via RAGatouille. It provides an efficient and effective way to implement retrieval-augmented generation in your projects.

🌟 Features

  • 📚 Efficient document indexing
  • 🚀 Fast and accurate retrieval with reranking as an optional parameter
  • 🔗 Seamless integration with ColBERT and RAGatouille
  • 📄 Support for multiple file formats (PDF, CSV, XLSX, DOCX, HTML, JSON, JSONL, TXT)
  • ⚙️ Customizable retrieval parameters

🛠️ Installation

You can install ColRAG using pip:

pip install colrag

You can also install ColRAG using poetry (recommended):

Using Poetry

If you're using Poetry to manage your project dependencies, you can add ColRAG to your project with:

poetry add colrag

Or if you want to add it to your pyproject.toml manually, you can add the following line under [tool.poetry.dependencies]:

colrag = "^0.1.0"  # Replace with the latest version

Then run:

poetry install

🚀 Quick Start

Here's a simple example to get you started:

from colrag import index_documents, retrieve_and_rerank_documents

# Index your documents
index_path = index_documents("/path/to/your/documents", "my_index")

# Retrieve documents
query = "What is the capital of France?"
results = retrieve_and_rerank_documents(index_path, query)

for result in results:
    print(f"Score: {result['score']}, Content: {result['content'][:100]}...")

📖 Documentation

For more detailed information about ColRAG's features and usage, please refer to our documentation.

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for more details.

📄 License

ColRAG is released under the MIT License. See the LICENSE file for more details.

📚 Citation

If you use ColRAG in your research, please cite it as follows:

@software{colrag,
  author = {Syed Asad},
  title = {ColRAG: A RAG pipeline using ColBERT via RAGatouille},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/syedzaidi-kiwi/ColRAG.git}}
}

📬 Contact

For any questions or feedback, please open an issue on our GitHub repository.

🙏 Acknowledgements


Built with ❤️ by your username

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

colrag-0.1.4.tar.gz (10.0 kB view details)

Uploaded Source

Built Distribution

colrag-0.1.4-py3-none-any.whl (10.7 kB view details)

Uploaded Python 3

File details

Details for the file colrag-0.1.4.tar.gz.

File metadata

  • Download URL: colrag-0.1.4.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.7 Darwin/23.5.0

File hashes

Hashes for colrag-0.1.4.tar.gz
Algorithm Hash digest
SHA256 a5067d987394a3abfcdc80f331f70e91e74715e74bcce5efb4752df65459ccd4
MD5 0ff5223ac8f942fb9ef3009f483ba760
BLAKE2b-256 40b9c9cd0c4bf86fecf11691be539575ab3397ff188d9b27480a2413b950ba92

See more details on using hashes here.

File details

Details for the file colrag-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: colrag-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 10.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.7 Darwin/23.5.0

File hashes

Hashes for colrag-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f1dd813a3ed9172f28732633f7134698b5e6ba41cdffede9bca4657e77f6baa6
MD5 cddc5bd139c81f86a7d1a9f244e6e390
BLAKE2b-256 5c7ad94c3dbdd06c73e7b9455dc7920c31ceb6254d6d22540b334c771a8d2298

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page