Comet MPM SDK
Project description
comet_mpm
Python SDK for Comet Model Production Monitoring
Installation
pip install comet_mpm --upgrade
To use these command-line functions, you'll need to have your Comet API key set in one of the following two ways.
- Environment variables (see below)
- Directly as an argument to
comet_mpm.API(api_key="...")
export COMET_API_KEY="YOUR-COMET-API-KEY"
API Usage
The comet_mpm package provides a high-level API for interacting with Comet Model Production Monitoring. Here's how to get started:
Initialization
from comet_mpm import API
# Initialize with API key from environment variable
api = API()
# Or initialize with explicit API key
api = API(api_key="YOUR-COMET-API-KEY")
Working with Models
Get a Model by Name
# Get a specific model by workspace and model name
model = api.get_model_by_name("my-workspace", "my-model")
if model:
print(f"Model ID: {model.model_id}")
# Get model details
details = model.get_details()
print(f"Model details: {details}")
else:
print("Model not found")
Get the Default Model (Python Panel in Dashboard)
# Get the default model configured for the current panel
model = api.get_model()
if model:
print(f"Default model ID: {model.model_id}")
else:
print("No default model configured")
Model Analytics
Once you have a model instance, you can perform various analytics:
Prediction Counts
# Get number of predictions for a time period
predictions_df = model.get_nb_predictions(
start_date="2024-01-01",
end_date="2024-01-31",
interval_type="DAILY"
)
print(predictions_df)
Custom SQL Queries
# Execute custom SQL queries
custom_metric_df = model.get_custom_metric(
sql="SELECT count(*) FROM model WHERE prediction > 0.5",
start_date="2024-01-01",
end_date="2024-01-31",
interval_type="DAILY",
filters=["region=us-east", "version=1.0"],
model_version="1.0.0"
)
print(custom_metric_df)
Feature Analysis
# Get available features
numerical_features = model.get_numerical_features()
categorical_features = model.get_categorical_features()
print(f"Numerical features: {numerical_features}")
print(f"Categorical features: {categorical_features}")
# Feature drift analysis
drift_df = model.get_feature_drift(
feature_name="age",
algorithm="EMD", # Options: "EMD", "PSI", "KL"
start_date="2024-01-01",
end_date="2024-01-31",
interval_type="DAILY"
)
print(drift_df)
# Feature distribution for categorical features
distribution_df = model.get_feature_category_distribution(
feature_name="region",
normalize=True, # Return percentages instead of counts
start_date="2024-01-01",
end_date="2024-01-31",
interval_type="DAILY"
)
print(distribution_df)
# Feature density for numerical features
density_df = model.get_feature_density(
feature_name="age",
start_date="2024-01-01",
end_date="2024-01-31"
)
print(density_df)
# Feature percentiles for numerical features
percentiles_df = model.get_feature_percentiles(
feature_name="age",
percentiles=[0, 0.25, 0.5, 0.75, 1.0],
start_date="2024-01-01",
end_date="2024-01-31",
interval_type="DAILY"
)
print(percentiles_df)
Panel Configuration
The API also provides access to panel configuration settings:
# Get panel workspace
workspace = api.get_panel_workspace()
print(f"Panel workspace: {workspace}")
# Get panel dimensions
width = api.get_panel_width()
height = api.get_panel_height()
size = api.get_panel_size() # Returns (width, height) tuple
print(f"Panel size: {size}")
Complete Example
from comet_mpm import API
# Initialize API
api = API()
# Get a model
model = api.get_model_by_name("my-workspace", "fraud-detection-model")
if model:
# Get model details
details = model.get_details()
print(f"Model: {details['name']}")
# Analyze predictions over time
predictions = model.get_nb_predictions(
start_date="2024-01-01",
end_date="2024-01-31",
interval_type="DAILY"
)
# Check feature drift for important features
for feature in ["transaction_amount", "user_age"]:
drift = model.get_feature_drift(
feature_name=feature,
algorithm="EMD",
start_date="2024-01-01",
end_date="2024-01-31"
)
print(f"Drift for {feature}: {drift}")
# Get custom metrics
fraud_rate = model.get_custom_metric(
sql="SELECT AVG(prediction) FROM model WHERE prediction > 0.5",
start_date="2024-01-01",
end_date="2024-01-31",
interval_type="DAILY"
)
print(f"Fraud rate over time: {fraud_rate}")
All methods return pandas DataFrames with metadata stored in the .attrs attribute, making it easy to track the parameters used for each query.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file comet_mpm-1.4.4.tar.gz.
File metadata
- Download URL: comet_mpm-1.4.4.tar.gz
- Upload date:
- Size: 45.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
27a4b33bc141dfe66c0fb5953ab9e21249476ef21fb4cff40a2a5b2876c65b8c
|
|
| MD5 |
04b7c9cf9b3694d1e329252a13ee91f9
|
|
| BLAKE2b-256 |
6c58a9061eb7e4a37ad9e372a3daf18134ad4b11ab91864a5d154f21ccccf439
|
File details
Details for the file comet_mpm-1.4.4-py3-none-any.whl.
File metadata
- Download URL: comet_mpm-1.4.4-py3-none-any.whl
- Upload date:
- Size: 69.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
3f0fa0074903047b23e26a2766c5916965f2d11d7aaa47dd8d5571507586c094
|
|
| MD5 |
e6d06a84ec8ef6ff6201be6868075d89
|
|
| BLAKE2b-256 |
63ae57b6c90459135e834b36c474d4303ad1b4ce399e7f4312d0b5f09dbc3e7f
|