Skip to main content

Comet MPM SDK

Project description

comet_mpm

Python SDK for Comet Model Production Monitoring

Installation

pip install comet_mpm --upgrade

To use these command-line functions, you'll need to have your Comet API key set in one of the following two ways.

  1. Environment variables (see below)
  2. Directly as an argument to comet_mpm.API(api_key="...")
export COMET_API_KEY="YOUR-COMET-API-KEY"

API Usage

The comet_mpm package provides a high-level API for interacting with Comet Model Production Monitoring. Here's how to get started:

Initialization

from comet_mpm import API

# Initialize with API key from environment variable
api = API()

# Or initialize with explicit API key
api = API(api_key="YOUR-COMET-API-KEY")

Working with Models

Get a Model by Name

# Get a specific model by workspace and model name
model = api.get_model_by_name("my-workspace", "my-model")

if model:
    print(f"Model ID: {model.model_id}")
    # Get model details
    details = model.get_details()
    print(f"Model details: {details}")
else:
    print("Model not found")

Get the Default Model (Python Panel in Dashboard)

# Get the default model configured for the current panel
model = api.get_model()

if model:
    print(f"Default model ID: {model.model_id}")
else:
    print("No default model configured")

Model Analytics

Once you have a model instance, you can perform various analytics:

Prediction Counts

# Get number of predictions for a time period
predictions_df = model.get_nb_predictions(
    start_date="2024-01-01",
    end_date="2024-01-31",
    interval_type="DAILY"
)
print(predictions_df)

Custom SQL Queries

# Execute custom SQL queries
custom_metric_df = model.get_custom_metric(
    sql="SELECT count(*) FROM model WHERE prediction > 0.5",
    start_date="2024-01-01",
    end_date="2024-01-31",
    interval_type="DAILY",
    filters=["region=us-east", "version=1.0"],
    model_version="1.0.0"
)
print(custom_metric_df)

Feature Analysis

# Get available features
numerical_features = model.get_numerical_features()
categorical_features = model.get_categorical_features()
print(f"Numerical features: {numerical_features}")
print(f"Categorical features: {categorical_features}")

# Feature drift analysis
drift_df = model.get_feature_drift(
    feature_name="age",
    algorithm="EMD",  # Options: "EMD", "PSI", "KL"
    start_date="2024-01-01",
    end_date="2024-01-31",
    interval_type="DAILY"
)
print(drift_df)

# Feature distribution for categorical features
distribution_df = model.get_feature_category_distribution(
    feature_name="region",
    normalize=True,  # Return percentages instead of counts
    start_date="2024-01-01",
    end_date="2024-01-31",
    interval_type="DAILY"
)
print(distribution_df)

# Feature density for numerical features
density_df = model.get_feature_density(
    feature_name="age",
    start_date="2024-01-01",
    end_date="2024-01-31"
)
print(density_df)

# Feature percentiles for numerical features
percentiles_df = model.get_feature_percentiles(
    feature_name="age",
    percentiles=[0, 0.25, 0.5, 0.75, 1.0],
    start_date="2024-01-01",
    end_date="2024-01-31",
    interval_type="DAILY"
)
print(percentiles_df)

Panel Configuration

The API also provides access to panel configuration settings:

# Get panel workspace
workspace = api.get_panel_workspace()
print(f"Panel workspace: {workspace}")

# Get panel dimensions
width = api.get_panel_width()
height = api.get_panel_height()
size = api.get_panel_size()  # Returns (width, height) tuple
print(f"Panel size: {size}")

Complete Example

from comet_mpm import API

# Initialize API
api = API()

# Get a model
model = api.get_model_by_name("my-workspace", "fraud-detection-model")

if model:
    # Get model details
    details = model.get_details()
    print(f"Model: {details['name']}")

    # Analyze predictions over time
    predictions = model.get_nb_predictions(
        start_date="2024-01-01",
        end_date="2024-01-31",
        interval_type="DAILY"
    )

    # Check feature drift for important features
    for feature in ["transaction_amount", "user_age"]:
        drift = model.get_feature_drift(
            feature_name=feature,
            algorithm="EMD",
            start_date="2024-01-01",
            end_date="2024-01-31"
        )
        print(f"Drift for {feature}: {drift}")

    # Get custom metrics
    fraud_rate = model.get_custom_metric(
        sql="SELECT AVG(prediction) FROM model WHERE prediction > 0.5",
        start_date="2024-01-01",
        end_date="2024-01-31",
        interval_type="DAILY"
    )
    print(f"Fraud rate over time: {fraud_rate}")

All methods return pandas DataFrames with metadata stored in the .attrs attribute, making it easy to track the parameters used for each query.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

comet_mpm-1.4.4.tar.gz (45.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

comet_mpm-1.4.4-py3-none-any.whl (69.1 kB view details)

Uploaded Python 3

File details

Details for the file comet_mpm-1.4.4.tar.gz.

File metadata

  • Download URL: comet_mpm-1.4.4.tar.gz
  • Upload date:
  • Size: 45.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for comet_mpm-1.4.4.tar.gz
Algorithm Hash digest
SHA256 27a4b33bc141dfe66c0fb5953ab9e21249476ef21fb4cff40a2a5b2876c65b8c
MD5 04b7c9cf9b3694d1e329252a13ee91f9
BLAKE2b-256 6c58a9061eb7e4a37ad9e372a3daf18134ad4b11ab91864a5d154f21ccccf439

See more details on using hashes here.

File details

Details for the file comet_mpm-1.4.4-py3-none-any.whl.

File metadata

  • Download URL: comet_mpm-1.4.4-py3-none-any.whl
  • Upload date:
  • Size: 69.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for comet_mpm-1.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 3f0fa0074903047b23e26a2766c5916965f2d11d7aaa47dd8d5571507586c094
MD5 e6d06a84ec8ef6ff6201be6868075d89
BLAKE2b-256 63ae57b6c90459135e834b36c474d4303ad1b4ce399e7f4312d0b5f09dbc3e7f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page