Skip to main content

Python CSV, and delimiter-spaced files, for humans!

Project description

Comma: A Python CSV Library for Humans

pytest codecov Documentation Status Run on Repl.it Stargazers

This library tries to make manipulating CSV files a great experience.

Example session

Features

Here are some of the features that comma supports:

  • Robust autodetection of CSV parameters (thanks to clevercsv) and encoding (thanks to chardet).
  • Single-line usage, comma.load(...), no syntax to remember or parameters to tweak.
  • Simple, Pythonic interface to access/modify the rows using standard list and dict operations, i.e. row[0] and row["street"] are equivalent.
  • Column slices using the header name, i.e. table["street"].
  • In-place editing of the dataset, including multiple lines.
  • Opening files directly from an URL.

Installation

If you use pip:

pip install 'comma[autodetect,net]'

or if you use pipenv:

pipenv install 'comma[autodetect,net]'

Why?

Although Python, fortuitously, is "batteries included", on occasion, some of the libraries end up being designed with APIs that don't map well to what turns out to be the most common usage patterns. This is what happened with the various urllib libraries, incredibly powerful, but limiting users by its complexity---it was not straightforward, for instance, to use cookies: One of several problems that requests by @ken-reitz addressed. Indeed, requests abstracts power beneath simplicity, smart defaults, and discoverability.

For the CSV format, we are confronted with a similar situation. While both the JSON and YAML formats have packages that provide, one-command means to load content from files in those respective formats to a nested Python object, for the CSV format, the standard library has you use an iterator to access the data. Many details require significant syntax change (for instance the difference between having lists or dictionaries depends on the class that is used to read the file).

Since then, we also have several excellent libraries that, by providing great auto-detection (of dialect, file format, encoding, etc.) allow for hiding many details from the end user.

All this to say, comma will try to do exactly what you want when you do:

import comma
data = comma.load("file.csv")
data[0]["field"] = "changed value"
comma.dump(data, filename="file_modified.csv")

Alternatives

Python is fortunate to have a lot of very good libraries to read/write CSV and tabular files in general. (Some of these were discovered through the excellent Awesome Python list.)

  • clevercsv: An exceptional library by @GjjvdBurg, builds on statistical and empirical to provide powerful and reliable CSV dialect detection. However, it strives to be a drop-in replacement for the original Python csv module, and as such does not improve on the complex syntax. This library is the culmination of serious peer-reviewed research, and comma uses it internally to improve auto-detection.

  • csvkit: This is a set of command-line tools (rather than a module/package) written in Python, to make it easier to manipulate CSV files. One of the highlights is a tool called csvpy <file.csv> to open a Python shell with the CSV data loaded into a Python object called reader, to quickly run some Python logic on the data. While it is technically possible to use csvkit's internals in a project, this is not documented.

  • pandas: An advanced data science package for Python, this certainly provides a powerful CSV (and more generally, table file) reader and parser. The API of the table object is very powerful, but you need to take the time to learn how to use it. This library is perhaps not ideal for file manipulations.

  • pyexcel: This library provides access to Excel and other tabular formats, including CSV, and various data sources (stream, database, file, ...). It emphasizes one common format-agnostic API, that instead has the user choose the data format (list, matrix, dictionary, ...).

  • tablib: This library was originally written by Kenneth Reitz, the creator who brought requests, pipenv and many other goodies to Python---and then included in the Jazzband collective. The focus of this library is on interoperating between many different file formats (such as XLS, CSV, JSON, YAML, DF, etc., ..., even LaTeX booktabs!). It seems to have a very high adoption rate because it is a dependency for many Jazzband libraries. The API is class-based rather than method-based. A companion library, prettytable focuses on pretty printing tabular data (including from a CSV file).

  • tabulator: This library provides a single interface to manipulate extremely large tabular data---and useful for files so large that they need to be streamed line-by-line; the library supports a broad array of formats including reading data directly from Google Spreadsheets. However this power means that reading a CSV file requires several operations.

Although not specifically restricted to Python, the AwesomeCSV resource is also interesting.

Miscellaneous

Although not specifically a Python library, nor designed to read/write CSV files (but instead to compare them), daff is a really cool project: It provides a diff of tabular data with cell-level awareness.

Another unrelated project is Grist, a spreadsheet PaaS, which among other useful features, allows the use of Python within formulas.

Acknowledgements

Thanks to @zbanks for the name of the package! Thanks to @rfreling, @adamfinkelstein for discussing ideas before I got started on this. Thanks to @GjjvdBurg and collaborators for awesome, awesome contribution to text processing science and our Python community with clevercsv.

License

This project is licensed under the LGPLv3 license, with the understanding that importing a Python modular is similar in spirit to dynamically linking against it.

  • You can use the library comma in any project, for any purpose, as long as you provide some acknowledgement to this original project for use of the library.

  • If you make improvements to comma, you are required to make those changes publicly available.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

comma-0.5.2.tar.gz (33.8 kB view details)

Uploaded Source

Built Distribution

comma-0.5.2-py3-none-any.whl (39.5 kB view details)

Uploaded Python 3

File details

Details for the file comma-0.5.2.tar.gz.

File metadata

  • Download URL: comma-0.5.2.tar.gz
  • Upload date:
  • Size: 33.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.2 Darwin/19.5.0

File hashes

Hashes for comma-0.5.2.tar.gz
Algorithm Hash digest
SHA256 6c65041c77e9b802279970fba9d402270bccf0800b425f147f414c2ab1c60920
MD5 6474e9c9b7a880c0012d8bcc47e2c84e
BLAKE2b-256 01c289367a5589ff497c337479ce4cc2f89042cbbe0ab53f2d8b00ffb732b4f4

See more details on using hashes here.

File details

Details for the file comma-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: comma-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 39.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.2 Darwin/19.5.0

File hashes

Hashes for comma-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 b1160110072d3a68f05db77f10ee1b09e29dbea9e7a0e566b81ede138efc3c2a
MD5 d038061b9c1867ef78c5917351407e60
BLAKE2b-256 fe69a533455323f113dc4026e6ee5c38ac5e2f06a9a03fc56aecbc1167d08223

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page