Skip to main content

An implementation of GPT-4 that recognizes which commands it must run to fulfill an instruction, using a graph. Create new commands easily by describing them using natural language and coding the functions corresponding to the commands.

Project description

CommandsGPT

An implementation of GPT-4 to recognize instructions. It recognizes which commands it must run to fulfill the user's instruction, using a graph where each node is a command and the data generated by each command can be passed to other commands.

Create new commands easily by describing them using natural language and coding the functions corresponding to the commands.

Installation

Install the commandsgpt module.

pip install commandsgpt

If you're using a virtual environment:

pipenv install commandsgpt

Basic usage

Create a commands dictionary that will store the commands described in natural language. Create the functions that will be called when the commands are executed (they must match the arguments and return values of the commands dict; the first parameter of these functions must be a Config object). Create a command_name_to_func dictionary that will take the name of a command and return the corresponding function.

Example of commands dictionary

commands = {
    "REQUEST_USER_INPUT": {
        "description": "Asks the user to input data through the interface.",
        "arguments": {
            "message": {"description": "Message displayed to the user related to the data that will be requested (example: 'Enter your age').", "type": "string"},
        },
        "generates_data": {
            "input": {"description": "Data entered by the user", "type": "string"},
        },
    },
    ...
}

Example of a command function

def request_user_input_command(config: Config, message: str) -> dict[str, Any]:
    input_ = input(f"{message}\n*: ")
    results = {
        "input": input_,
    }
    return results

Example of command_name_to_func dictionary

command_name_to_func = {
    "REQUEST_USER_INPUT": request_user_input_command,
    ...
}

Add the essential commands to your commands dictionaries.

  • These are the default commands that implement core logic to the model's thinking, like an IF command.
  • If you already defined your own core logic commands (IF command, THINK command, etc.), then you are free not to use them.
from commands_gpt.commands.commands_funcs import add_essential_commands
add_essential_commands(commands, command_name_to_func)

Your config object:

config = Config("gpt-4-0314", commands, command_name_to_func)

Create an instruction:

instruction = input("Enter your instruction: ")

Pass your instruction to the recognizer model:

graph, graph_data = recognize_instruction_and_create_graph(
    instruction, config.chat_model, config.commands, config.command_name_to_func,
)

Finally, execute the graph of commands:

execute_commands(config, graph, graph_data, config.commands, config.command_name_to_func)

Basic example

from typing import Any
from pathlib import Path
from commands_gpt.instruction_recognition import recognize_instruction_and_create_graph
from commands_gpt.commands.graphs import execute_commands
from commands_gpt.config import Config

# Commands Natural Language Dict

commands = {
    "WRITE_TO_USER": {
        "description": "Writes something to the interface to communicate with the user.",
        "arguments": {
            "content": {"description": "Content to write.", "type": "string"},
        },
        "generates_data": {},
    },
    "REQUEST_USER_INPUT": {
        "description": "Asks the user to input data through the interface.",
        "arguments": {
            "message": {"description": "Message displayed to the user related to the data that will be requested (example: 'Enter your age').", "type": "string"},
        },
        "generates_data": {
            "input": {"description": "Data entered by the user", "type": "string"},
        },
    },
    "WRITE_FILE": {
        "description": "Write a file.",
        "arguments": {
            "content": {"description": "Content that will be written.", "type": "string"},
            "file_path": {"description": "Complete path of the file that will be written.", "type": "string"},
        },
        "generates_data": {},
    },
}

# Commands functions

def write_to_user_command(config: Config, content: str) -> dict[str, Any]:
    # add newlines because regex data injection replaces newline characters
    # by \\n substrings.
    content_with_newlines = "\n".join(content.split("\\n"))
    print(f">>> {content_with_newlines}")
    return {}

def request_user_input_command(config: Config, message: str) -> dict[str, Any]:
    input_ = input(f"{message}\n*: ")
    results = {
        "input": input_,
    }
    return results

def write_file_command(config: Config, content: str, file_path: str) -> dict[str, Any]:
    file_dir = Path(file_path).parent
    assert file_dir.exists(), f"Container directory '{file_dir}' does not exist."
    with open(file_path, "w+", encoding="utf-8") as f:
        f.write(content)
        f.close()
    return {}

# Command name to function dict
command_name_to_func = {
    "WRITE_TO_USER": write_to_user_command,
    "REQUEST_USER_INPUT": request_user_input_command,
    "WRITE_FILE": write_file_command,
}

from commands_gpt.commands.commands_funcs import add_essential_commands
add_essential_commands(commands, command_name_to_func)

chat_model = "gpt-4-0314"

config = Config(chat_model, commands, command_name_to_func)

instruction = input("Enter your prompt: ")
graph, graph_data = recognize_instruction_and_create_graph(
    instruction, config.chat_model, config.commands, config.command_name_to_func,
)
execute_commands(config, graph, graph_data, config.commands, config.command_name_to_func)

Adding custom commands

You can add and modify your own custom commands by creating two dictionaries:

  • commands: The commands that the model can use, described in natural language. The keys are the name of the commands, and the values are dictionaries.

    • The nested dictionaries have keys description, arguments and generates_data.

    • description: Description of the command in natural language.

    • arguments: Arguments that the function of the command receives. It's a dictionary which keys are the names of the arguments, and the values are dictionaries that describe the arguments.

      • The nested dictionaries have keys description and type.

      • description: Description of the argument in natural language.

      • type: Data type. E.g.: "string", "boolean", "int".

    • generates_data: The data generated by the command that other commands will be able to access. It's a dictionary which keys are the names of the data field, and the values are dictionaries that describe the data field.

      • The nested dictionaries have keys description and type.

      • description: Description of the data field in natural language.

      • type: Data type. E.g.: "string", "boolean", "int".

Example

commands = {
    "WRITE_TO_USER": {
        "description": "Writes something to the interface to communicate with the user.",
        "arguments": {
            "content": {"description": "Content to write.", "type": "string"},
        },
        "generates_data": {},
    },
    "REQUEST_USER_INPUT": {
        "description": "Asks the user to input data through the interface.",
        "arguments": {
            "message": {"description": "Message displayed to the user related to the data that will be requested (example: 'Enter your age').", "type": "string"},
        },
        "generates_data": {
            "input": {"description": "Data entered by the user", "type": "string"},
        },
    },
    "WRITE_FILE": {
        "description": "Write a file.",
        "arguments": {
            "content": {"description": "Content that will be written.", "type": "string"},
            "file_path": {"description": "Complete path of the file that will be written.", "type": "string"},
        },
        "generates_data": {},
    },
}
  • command_name_to_func: The keys of this dictionary are the name of the commands, and the values are the function.

    • The name of the function is irrelevant.

    • The first argument must be the Config object.

    • The arguments must match the arguments from the commands dictionary.

    • The return value must be a dictionary which keys must match the "generates_data" key.

    • The data types must match the ones declared in the commands dictionary.

Example

def write_to_user_command(config: Config, content: str) -> dict[str, Any]:
    # add newlines because regex data injection replaces newline characters
    # by \\n substrings.
    content_with_newlines = "\n".join(content.split("\\n"))
    print(f">>> {content_with_newlines}")
    return {}

def request_user_input_command(config: Config, message: str) -> dict[str, Any]:
    input_ = input(f"{message}\n*: ")
    results = {
        "input": input_,
    }
    return results

def write_file_command(config: Config, content: str, file_path: str) -> dict[str, Any]:
    file_dir = Path(file_path).parent
    assert file_dir.exists(), f"Container directory '{file_dir}' does not exist."
    with open(file_path, "w+", encoding="utf-8") as f:
        f.write(content)
        f.close()
    return {}

# add your functions here
command_name_to_func = {
    "WRITE_TO_USER": write_to_user_command,
    "REQUEST_USER_INPUT": request_user_input_command,
    "WRITE_FILE": write_file_command,
}

MIT License

Copyright (c) [2023] [Martín Alexis Martínez Andrade]

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

commandsgpt-1.1.0.tar.gz (12.2 kB view details)

Uploaded Source

Built Distribution

commandsgpt-1.1.0-py3-none-any.whl (12.9 kB view details)

Uploaded Python 3

File details

Details for the file commandsgpt-1.1.0.tar.gz.

File metadata

  • Download URL: commandsgpt-1.1.0.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for commandsgpt-1.1.0.tar.gz
Algorithm Hash digest
SHA256 a9956074780e53e024ef1e6923ebe60a4c10a3267d0941140208dee2ed122231
MD5 2f5d56b663d5083480f7a21fba6a005a
BLAKE2b-256 0b7e4fa748ec28dce85048e26e6c41ab21cd4e5dbf8c40d88c66d9621a99bf60

See more details on using hashes here.

File details

Details for the file commandsgpt-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: commandsgpt-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for commandsgpt-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7be4ccd72e55474d963cd9f2298f6b7ec719042c5f7328f8c115569f62c895c1
MD5 e6b51ea2e508bdd7903d9543b4bae706
BLAKE2b-256 5e3b899446f52065cd6fab6add3e7cb381f9787cb878c9d36d9b4f7dab4fee1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page