common_datasets
Project description
common_datasets: common machine learning datasets
This package provides an unofficial collection of datasets widely used in the evaluation of machine learning techniques, mainly small and imbalanced datasets for binary, multiclass classification and regression. The datasets are provided in the usual sklearn.datasets format, with missing data imputation and the encoding of category and ordinal features. The authors of this repository do not own any licenses for the datasets, the goal of the project is to provide a stanardized collection of datasets for research purposes.
PLEASE DO NOT CITE OR REFER TO THIS PACKAGE IN ANY FORM!
If you use data through this repository, please cite the original works publishing and specifying these datasets:
@article{keel,
author={Alcala-Fdez, J. and Fernandez, A. and Luengo, J. and Derrac, J. and Garcia, S.
and Sanchez, L. and Herrera, F.},
title={KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms
and Experimental Analysis Framework},
journal={Journal of Multiple-Valued Logic and Soft Computing},
volume={17},
number={2-3},
year={2011},
pages={255-287}}
@misc{uci,
author = "Dua, Dheeru and Karra Taniskidou, Efi",
year = "2017",
title = "{UCI} Machine Learning Repository",
url = "http://archive.ics.uci.edu/ml",
institution = "University of California, Irvine, School of Information and Computer Sciences"}
@article{krnn,
author={X. J. Zhang and Z. Tari and M. Cheriet},
title={{KRNN}: k {Rare-class Nearest Neighbor} classification},
journal={Pattern Recognition},
year={2017},
volume={62},
number={2},
pages={33--44}
}
For each individual dataset the citation key referring to its publisher or a relevant publication in which the dataset in the given configuration has been used is provided as part of the dataset. For example:
# binary classification
>> import common_datasets.binary_classification as binclas
>> dataset = bin_clas.load_abalone19()
>> dataset['citation_key']
'keel'
Introduction
The package contains 119 binary classification, 23 multiclass classification and 23 regression datasets.
Installation
The package can be cloned from GitHub in the usual way, and the latest stable version is also available in the PyPI repository:
pip install common_datasets
Use cases
Loading a dataset
# binary classification
import common_datasets.binary_classification as binclas
dataset = binclas.load_abalone19()
# multiclass classification
import common_datasets.multiclass_classification as multclas
dataset = multclas.load_abalone()
# regression
from common_datasets import regression
dataset = regression.load_treasury()
Querying all dataset loaders and loading a dataset
# binary classification
import common_datasets.binary_classification as binclas
data_loaders = binclas.get_data_loaders()
dataset_0 = data_loaders[0]()
# multiclass classification
import common_datasets.multiclass_classification as multclas
data_loaders = multclas.get_data_loaders()
dataset_0 = data_loaders[0]()
# regression
from common_datasets import regression
data_loaders = regression.get_data_loaders()
dataset_0 = data_loaders[0]()
Querying the loaders of the 5 smallest datasets regarding the total number of records
# binary classification
import common_datasets.binary_classification as binclas
data_loaders = binclas.get_filtered_data_loaders(n_smallest=5, sorting='n')
dataset_0 = data_loaders[0]()
# multiclass classification
import common_datasets.multiclass_classification as multclas
data_loaders = multclas.get_data_loaders(n_smallest=5, sorting='n')
dataset_0 = data_loaders[0]()
# regression
from common_datasets import regression
data_loaders = regression.get_data_loaders(n_smallest=5, sorting='n')
dataset_0 = data_loaders[0]()
Documentation
For a detailed documentation and parameters of the functions see http://common_datasets.readthedocs.io.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for common_datasets-0.2.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 76c0dff2f1a064e340868f3282e19a1d8f2beacd961c84913e1e74f20545d1df |
|
MD5 | cdd600a96ad9d2e0f0acfb19bcc24e47 |
|
BLAKE2b-256 | 5b9d8f20691c9bbfc5d0aec4691860867d64d67e94b5f0f913b3181b2fd57560 |