CommonRoad Dataset Converter
Project description
Dataset Converters
This repository contains converters from different datasets to CommonRoad scenarios using a common commandline interface. Currently, we support:
Install
pip install commonroad-dataset-converter
Install with support for nuplan dataset
pip install commonroad-dataset-converter[nuplan]
Development setup
This project uses poetry. Please follow the instructions to create the virtual development environment.
Usage
Type following command for help
$ crconvert --help
Usage: crconvert [OPTIONS] INPUT_DIR OUTPUT_DIR COMMAND [ARGS]...
Generates CommonRoad scenarios from different datasets
Arguments:
INPUT_DIR Path to the data folder [required]
OUTPUT_DIR Directory to store generated CommonRoad files [required]
Options:
--num-time-steps INTEGER Maximum number of time steps in the
CommonRoad scenario [default: 150]
--num-planning-problems INTEGER
Number of planning problems per CommonRoad
scenario. More than one creates a
cooperative scenario. [default: 1]
--keep-ego / --no-keep-ego Vehicles used for planning problem should be
kept in the scenario. [default: no-keep-
ego]
--obstacles-start-at-zero / --no-obstacles-start-at-zero
The lowest time step in the scenario is set
to zero. [default: no-obstacles-start-at-
zero]
--downsample INTEGER Decrease dt by n*dt [default: 1]
--num-processes INTEGER Number of processes to convert dataset.
[default: 1]
--all-vehicles / --no-all-vehicles
Create one planning problem/scenario for
each valid vehicle. Invalidates num-time-
steps. [default: no-all-vehicles]
--routability-check [nocheck|strict]
Check routability of planning_problem
[default: RoutabilityCheck.Strict]
--output-type [xml|pb] File type of CommonRoad scenarios [default:
xml]
--max-scenarios INTEGER Only create up to n scenarios.
--samples-per-recording INTEGER
Randomly sample n scenarios from each
recording.
--help Show this message and exit.
Commands:
exid Convert the exiD dataset into CommonRoad scenario(s).
highd Convert the highD dataset into CommonRoad scenario(s).
ind Convert the inD dataset into CommonRoad scenario(s).
interaction Convert the INTERACTION dataset into CommonRoad scenario(s).
mona Convert the MONA dataset into CommonRoad scenario(s).
round Convert the rounD dataset into CommonRoad scenario(s).
sind Convert the SIND into CommonRoad scenario(s).
Docker
The dataset converter can also be used within a docker container. We provide a Dockerfile to build the image.
docker build -t commonroad-dataset-converter .
The image's entrypoint calls crconvert
. Any arguments passed to docker run
are passed to the executable. To access the original dataset and converted scenarios, provide it as a volume mount -v PATH_TO_DATASET:/data:ro
and -v PATH_TO_OUTPUT_DIRECTORY:/output
Example: Convert the highD dataset
docker run -v `pwd`/highd_dataset:/data:ro -v `pwd`/highd_scenarios:/output commonroad-dataset-converter \
--max-scenarios 20 --samples-per-recording 20 /data /output highd
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file commonroad_dataset_converter-2023.2.tar.gz
.
File metadata
- Download URL: commonroad_dataset_converter-2023.2.tar.gz
- Upload date:
- Size: 698.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.0 CPython/3.10.13 Linux/5.4.0-152-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2e1f40c12688cf245db3f1588ff15bddfea4cf7ca8c21ecf04ffc51d07b8fc39 |
|
MD5 | f1e87253daea27c5ce122e0aeb5aa6aa |
|
BLAKE2b-256 | 51398b88265b738b0a2619d52ed1df9cdec096e79bb07174185a390335e0fb6a |
File details
Details for the file commonroad_dataset_converter-2023.2-py3-none-any.whl
.
File metadata
- Download URL: commonroad_dataset_converter-2023.2-py3-none-any.whl
- Upload date:
- Size: 767.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.0 CPython/3.10.13 Linux/5.4.0-152-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5d22f2f089f71d7ead6c49f35314359344f9b499a65aa8611aa3f7a5a46da50 |
|
MD5 | d555af10731b2e9380daff15bcc668a3 |
|
BLAKE2b-256 | 52046772f7deb66f3f54ad32418800101f0ccbaadd5a38364a6a02d5f493a738 |