Skip to main content

Multiobjective framework Sofomore, instantiated withthe single-objective solver CMA-ES to obtainthe Multiobjective evolutionary algorithm COMO-CMA-ES.

Project description

Introduction

pycomocma is a Python implementation of COMO-CMA-ES which is a Multiobjective Evolution Strategy, based upon the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) single optimizer.

For the time being, only the bi-objective case is tested and functional.

Installation

Either via

pip install git+https://github.com/CMA-ES/pycomocma.git@master

or simply via

pip install comocma

Links

Testing of the comocma module

The script

python -m comocma

runs the test written in the __main__ file.

Use cases

Instantiating a multiobjective solver

Importing necessary packages:

import cma, comocma

Setting parameters:

dimension = 10  # dimension of the search space
num_kernels = 5 # number of single-objective solvers (number of points on the front)
sigma0 = 0.2    # initial step-sizes

Instantiate a multiobjective solver

list_of_solvers = comocma.get_cmas(num_kernels * [dimension * [0]], sigma0) # produce `num_kernels cma instances`
moes = comocma.Sofomore(list_of_solvers, reference_point=[11, 11]) # create a bi-objective como-cma-es instance
moes3 = comocma.Sofomore(list_of_solvers, reference_point=[11, 11, 11]) # create a multiobjective como-cma-es instance

Setting a callable multiobjective function

fitness = comocma.FitFun(cma.ff.sphere, lambda x: cma.ff.sphere(x-1)) # a callable bi-objective function
fitness3 = comocma.FitFun(cma.ff.sphere, lambda x: cma.ff.sphere(x-1), lambda x: cma.ff.sphere(x+1)) # a callable multiobjective function

Single-objective options: a use case with few cma-es' options

list_of_solvers = comocma.get_cmas(num_kernels * [dimension * [0]], 0.2, inopts={'bounds': [0.2, 0.9], 'tolx': 10**-7,'popsize': 32}) 
# produce `num_kernels cma instances`
moes = comocma.Sofomore(list_of_solvers, [1.1, 1.1]) # create a como-cma-es instance

Use case with some Multiobjective options

list_of_solvers = comocma.get_cmas(num_kernels * [dimension * [0]], 0.2)
moes = comocma.Sofomore(list_of_solvers, [1.1, 1.1], opts={'archive': True, 'restart': None, 'update_order': None}) # create a como-cma-es instance

The Optimize interface

Initialization

import cma, comocma

dimension = 10  # dimension of the search space
num_kernels = 5 # number of single-objective solvers (number of points on the front)
sigma0 = 0.2    # initial step-sizes

list_of_solvers = comocma.get_cmas(num_kernels * [dimension * [0]], sigma0) # produce `num_kernels cma instances`
moes = comocma.Sofomore(list_of_solvers, [11,11]) # create a como-cma-es instance

fitness = comocma.FitFun(cma.ff.sphere, lambda x: cma.ff.sphere(x-1)) # a callable bi-objective function

Optimizing fitness until default stopping criteria

moes.optimize(fitness)
Iterat #Fevals   Hypervolume   axis ratios   sigmas   min&max stds
                                  (median)  (median)    (median)
    1     10 1.210000000000000e+00 1.0e+00 2.00e-01  2e-01  2e-01
    2     20 1.210000000000000e+00 1.0e+00 2.00e-01  2e-01  2e-01
    3     30 1.210000000000000e+00 1.0e+00 1.85e-01  2e-01  2e-01
  100   1000 1.207601015381810e+00 1.6e+00 3.40e-02  3e-02  3e-02
  200   2000 1.209903687756354e+00 1.7e+00 7.74e-03  5e-03  6e-03
  300   3000 1.209997694077156e+00 1.8e+00 2.03e-03  1e-03  1e-03
  400   4000 1.209999800600613e+00 1.8e+00 4.90e-04  2e-04  3e-04
  480   4800 1.209999979594839e+00 1.9e+00 2.02e-04  7e-05  9e-05

Optimizing fitness with a limited number of iterations

moes.optimize(fitness, iterations=300)
Iterat #Fevals   Hypervolume   axis ratios   sigmas   min&max stds
                                (median)  (median)    (median)
  1     10 1.100000000000000e+01 1.0e+00 2.00e-01  2e-01  2e-01
  2     20 2.158412269365152e+01 1.0e+00 2.00e-01  2e-01  2e-01
  3     30 2.896035267829712e+01 1.0e+00 1.98e-01  2e-01  2e-01
100   1000 9.512982413314423e+01 1.7e+00 1.01e-01  8e-02  9e-02
200   2000 9.703624875547615e+01 1.9e+00 4.27e-02  3e-02  4e-02
300   3000 9.722958234416403e+01 1.9e+00 1.63e-02  9e-03  1e-02

Optimizing fitness with a maximum number of evaluations

moes.optimize(fitness, maxfun=3000)
Iterat #Fevals   Hypervolume   axis ratios   sigmas   min&max stds
                                (median)  (median)    (median)
  1     10 1.100000000000000e+01 1.0e+00 2.00e-01  2e-01  2e-01
  2     20 2.158412269365152e+01 1.0e+00 2.00e-01  2e-01  2e-01
  3     30 2.896035267829712e+01 1.0e+00 1.98e-01  2e-01  2e-01
100   1000 9.512982413314423e+01 1.7e+00 1.01e-01  8e-02  9e-02
200   2000 9.703624875547615e+01 1.9e+00 4.27e-02  3e-02  4e-02
300   3000 9.722958234416403e+01 1.9e+00 1.63e-02  9e-03  1e-02

The ask-and-tell interface

while not moes.stop():
    solutions = moes.ask("all")
    objective_values = [fitness(x) for x in solutions]
    moes.tell(solutions, objective_values)
    moes.disp()          # display datas during the optimization
    moes.logger.add()    # logging data after each `ask` and `tell` call
Iterat #Fevals   Hypervolume   axis ratios   sigmas   min&max stds
                                  (median)  (median)    (median)
    1    180 1.990425600000000e-01 1.0e+00 1.88e-01  2e-01  2e-01
    2    360 2.279075246432772e-01 1.1e+00 1.87e-01  2e-01  2e-01
    3    540 2.436105134581627e-01 1.2e+00 1.90e-01  2e-01  2e-01
  100  18000 3.607157703968831e-01 2.1e+00 1.80e-02  1e-02  2e-02
  200  35172 3.635275131024869e-01 2.1e+00 5.95e-03  4e-03  5e-03
  300  49788 3.637412031970786e-01 2.2e+00 1.29e-03  8e-04  1e-03
  320  50784 3.637421277015990e-01 2.2e+00 1.26e-03  7e-04  9e-04

Argument of moes.ask

solutions = moes.ask() # we generate offspring for only one kernel (sequential)
solutions = moes.ask(all) # we generate offspring simultaneously for all kernels (parallel)
solutions = moes.ask(number_asks) # we generate offspring for `number_asks` kernels

Picklable object: saving and resuming a MO optimization with the ask-and-tell interface

Initialization

import cma, como, pickle

dimension = 10  # dimension of the search space
num_kernels = 5 # number of single-objective solvers (number of points on the front)
sigma0 = 0.2    # initial step-sizes

list_of_solvers = como.get_cmas(num_kernels * [dimension * [0]], sigma0) # produce `num_kernels cma instances`
moes = como.Sofomore(list_of_solvers, reference_point = [11,11]) # create a como-cma-es instance

fitness = como.FitFun(cma.ff.sphere, lambda x: cma.ff.sphere(x-1)) # a callable bi-objective function

Saving an optimization

for i in range(100):
    solutions = moes.ask()
    objective_values = [fitness(x) for x in solutions]
    moes.tell(solutions, objective_values)
    moes.disp()

pickle.dump(moes, open('saved-mocma-object.pkl', 'wb')) # we save the instance
print('saved')
del moes  # deleting completely the Sofomore instance

Output

Iterat #Fevals   Hypervolume   axis ratios   sigmas   min&max stds
                                  (median)  (median)    (median)
    1     10 1.100000000000000e+01 1.0e+00 2.00e-01  2e-01  2e-01
    2     20 2.845200549045931e+01 1.0e+00 2.00e-01  2e-01  2e-01
    3     30 3.440089785096067e+01 1.0e+00 2.00e-01  2e-01  2e-01
  100   1000 9.562953505152342e+01 1.9e+00 1.13e-01  9e-02  1e-01
saved

Resuming an optimization

moes = pickle.load(open('saved-mocma-object.pkl', 'rb')) # we load the saved file here

moes.optimize(fitness, iterations=400)

Output

200   2000 9.716644477685412e+01 1.9e+00 3.33e-02  2e-02  3e-02
300   3000 9.723550009906029e+01 2.0e+00 1.13e-02  6e-03  8e-03
400   4000 9.724067117112808e+01 1.9e+00 2.95e-03  1e-03  2e-03
500   5000 9.724107479961819e+01 2.0e+00 9.38e-04  4e-04  5e-04

Example of plots

COMO-CMA-ES data plottings

moes.logger.plot_front()

image info

moes.logger.plot_divers()

image info

CMA-ES plots of written data

cma.plot("cma_kernels/0")

image info

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for comocma, version 0.5.1
Filename, size File type Python version Upload date Hashes
Filename, size comocma-0.5.1-py2.py3-none-any.whl (31.5 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size comocma-0.5.1.tar.gz (31.1 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page