Skip to main content

CompMech: Computational Mechanics in Python

Project description

Github Actions status: Test and coverage Release Documentation Deploy

Coverage status: codecov

Computational Mechanics (compmech)

Semi-analytical models for thin-walled structures.

The models herein presented are described in detail in the following publications:

Castro SPG, Mittelstedt C, Monteiro FAC, Arbelo MA, Ziegmann G, Degenhardt R. Linear buckling predictions of unstiffened laminated composite cylinders and cones under various loading and boundary conditions using semi-analytical models. Composite Structures, Vol. 118, Pages 303-315, December 2014. https://doi.org/10.1016/j.compstruct.2014.07.037

Castro SGP, Mittelstedt C, Monteiro FAC, Arbelo MA, Degenhardt R, Ziegmann G. A semi-analytical approach for linear and non-linear analysis of unstiffened laminated composite cylinders and cones under axial, torsion and pressure loads. Thin-Walled Structures, Vol. 90, Pages 61-73, May, 2015. https://doi.org/10.1016/j.tws.2015.01.002

Castro SGP, Mittelstedt C, Monteiro FAC, Degenhardt R, Ziegmann G. Evaluation of non-linear buckling loads of geometrically imperfect composite cylinders and cones with the Ritz method. Composite Structures, Vol. 122, Pages 284-299, April, 2015. https://doi.org/10.1016/j.compstruct.2014.11.050

Castro SGP, Donadon MV. Assembly of Semi-Analytical models to Address Linear Buckling and Vibration of Stiffened Composite Panels with Debonding Defect. Composite Structures, Vol. 160, Pages 232–247, January, 2017. https://doi.org/10.1016/j.compstruct.2016.10.026

Documentation

The documentation is available on: http://saullocastro.github.io/compmech/

Requirements

  • numpy
  • scipy
  • matplotlib
  • (for building only) Cython and a C compiler

License

Distrubuted under the 3-Clause BSD license (https://raw.github.com/saullocastro/composites/master/LICENSE).

Contact: S.G.P.Castro@tudelft.nl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

compmech-0.8.0.tar.gz (143.7 kB view details)

Uploaded Source

Built Distributions

compmech-0.8.0-cp311-cp311-win_amd64.whl (24.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

compmech-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

compmech-0.8.0-cp311-cp311-macosx_10_9_universal2.whl (38.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

compmech-0.8.0-cp310-cp310-win_amd64.whl (24.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

compmech-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (73.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

compmech-0.8.0-cp310-cp310-macosx_11_0_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

compmech-0.8.0-cp39-cp39-win_amd64.whl (24.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

compmech-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (73.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

compmech-0.8.0-cp39-cp39-macosx_11_0_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

compmech-0.8.0-cp38-cp38-win_amd64.whl (24.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

compmech-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (74.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

compmech-0.8.0-cp38-cp38-macosx_11_0_x86_64.whl (19.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

File details

Details for the file compmech-0.8.0.tar.gz.

File metadata

  • Download URL: compmech-0.8.0.tar.gz
  • Upload date:
  • Size: 143.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for compmech-0.8.0.tar.gz
Algorithm Hash digest
SHA256 e3eeb9beabff4bdbb37af9b93647daaeb11d5a7192d0cc3522dea30b7e8f2095
MD5 b299d14e7d80626fd2e4ced43dec7a28
BLAKE2b-256 abe33abb9eb59a5892f621664c441e9aecd21948107fa3e4f47cccdcc358006b

See more details on using hashes here.

File details

Details for the file compmech-0.8.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: compmech-0.8.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 24.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for compmech-0.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 78e1dedef1ff1f4efe73cf9c7044429539c454475ffc72f2b138752a79a44e79
MD5 e3e821984ad794e340b9bf102425cf36
BLAKE2b-256 61684925a924f560a7a21f808195b95eaf04cd48d689ed45e05b35f08f7d3b03

See more details on using hashes here.

File details

Details for the file compmech-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compmech-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cdfcc118eb239a1435f3c2df55a60ebe5c6e7b1873f747d4d8b66f4a85f27f4
MD5 c262249c42a11e6f0b263451ef1b42ab
BLAKE2b-256 62f6dd25ebf9997f09438abf19908fb439bc8858e24d4094f27b0c254657f736

See more details on using hashes here.

File details

Details for the file compmech-0.8.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for compmech-0.8.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 aabdac3716bcfbff0683e2fa0b307d8e332280b401b59ec776298c4f81b12531
MD5 36b9f1905df55476f0d92121ab41981e
BLAKE2b-256 4716494087c7dd4d3f54210183c5f47c142e24186e708e6070596f7e748e643f

See more details on using hashes here.

File details

Details for the file compmech-0.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: compmech-0.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 24.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for compmech-0.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d77e1a9c2bbe4172d11f66bbe8072df4a318f4803b6fbf277e6508cf0805e739
MD5 7d4384947e05e81ef8c38632b389ab58
BLAKE2b-256 22351522169da1c32fad6a58c2220f40018b7d4e6376ba338345232b58e14a22

See more details on using hashes here.

File details

Details for the file compmech-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compmech-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd93e90193fe33df2063ff7568f8fd924236259afe646e38c3d2f39547598402
MD5 70c448bb0583a464cc0f74a37bea0610
BLAKE2b-256 ede4b38ef19588f1afae81b393c2e1ef147ff3bc0497d3d6f7661fb7e15b39c9

See more details on using hashes here.

File details

Details for the file compmech-0.8.0-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for compmech-0.8.0-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 721994d8b75783e85f1ab8af1ae1578e4e3eb8c9dcc975dcd587789d6469c3fb
MD5 ba5b5485c7d6c7b4ffbbdcb34a74d019
BLAKE2b-256 58324040543adaacbccdf73eaeb0acb52930d03f4523170a0ef766284581bce0

See more details on using hashes here.

File details

Details for the file compmech-0.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: compmech-0.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 24.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for compmech-0.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 448044544979601d15e720483df0a879a26db8978107a91f952d25c0bb1a29e3
MD5 35b10ae57c00ed846307af8fe8917aa4
BLAKE2b-256 518458b2bf5eb284a7d20239ee60e87f76226810e7d7b18a368bb157890012f0

See more details on using hashes here.

File details

Details for the file compmech-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compmech-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cacbda63852a816d89b72be51b69817b5689c690b0153310f8a0e6d94076e486
MD5 d30d149a1ebd35e15000ad79c245ce1a
BLAKE2b-256 d40aa7a9cc045873e2c9d47106159b98980e131493abd0b5e27d2b1c6420096a

See more details on using hashes here.

File details

Details for the file compmech-0.8.0-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for compmech-0.8.0-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 503a61fa41583be18792e1cab9db77f96cb935e8cb9bae5921837a453b733924
MD5 c1115d1967cdf77b120bc9e8fd5f633a
BLAKE2b-256 51bc4af3e198b853b42711c6190fa64851da5ceaaf43d5663ca542512ea96a66

See more details on using hashes here.

File details

Details for the file compmech-0.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: compmech-0.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 24.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for compmech-0.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6c97500c70a211e7b5095c109512bbb3d331d6ff1c64de75ecf423e2dcf1e7ee
MD5 fd9d41c0e5c69b09c44045928948722c
BLAKE2b-256 a5cc77290f7c76be082594a76c0359876be927c036160117f7ab7bdd6806ef38

See more details on using hashes here.

File details

Details for the file compmech-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compmech-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d6601b1edb95abd6bc2e577ad1b843f5ae575d2e3076a8847ebb8a0cfd2e092
MD5 93852d855101bd1f6009c49dfd0f3771
BLAKE2b-256 f41ddb6ddb39f02507397a3b56294ff4a562cc6c69da3aee77e1a47826b47df4

See more details on using hashes here.

File details

Details for the file compmech-0.8.0-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for compmech-0.8.0-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 f45ff5ff735a9b6277352228b78b8d0ae274634d4a25393c57f0108cee77047d
MD5 8d0e7ef78de2090cd741d5d16d78f139
BLAKE2b-256 4d25f7b24ebda2911aee6f86ffa33a762ecf56bec276f27dabf168b897cde744

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page