Skip to main content

Condensed Matter Physics Numerical Analytics Libirary

Project description

Python Test C++ Test codecov

Description

COndensed Matter Physics Numerical Analytics Library (COMPNAL) is a numerical calculation library in the field of condensed matter physics. This library aims to provide a comprehensive set of numerical methods and algorithms tailored for analyzing various condensed matter systems.

API Reference

C++ Reference

Features

COMPNAL can calculate the following models on the following lattices by the following solvers.

Lattice

  • One-dimensional chain
  • Two-dimensional square lattice
  • Three-dimensional cubic lattice
  • Fully-connected lattice

Model

Classical models

  • Ising model
  • Polynomial Ising model

Solver

For Classical models

  • Classical Monte Carlo method
    • Single spin flip
    • Parallel tempering

Upcoming Features

We are actively working on expanding COMPNAL with the following upcoming features.

Lattice

  • Two-dimensional triangular lattice
  • Two-dimensional honeycomb lattice
  • User-defined lattice

Model

  • Classical model

    • Potts model
  • Quantum model

    • Transverse field Ising model
    • Heisenberg model
    • Hubbard model
    • Kondo Lattice model

Algorithm

  • Classical Monte Carlo method
    • Suwa-Todo algorithm
    • Wolff algorithm
    • Swendsen-Wang algorithm
  • Exact Diagonalization
    • Lanczos method
    • Locally Optimal Block Preconditioned Conjugate Gradient method
  • Density Matrix Renormalization Group

Installation

Install from PyPI

Only for Linux and MacOS.

pip install compnal

Install from GitHub

To install the latest release of compnal from the source, use the following command:

pip install git+https://github.com/K-Suzuki-Jij/compnal.git

Before installation, make sure that the following dependencies are installed.

Build from source

COMPNAL depends on the following libraries.

On MacOS

First, install the dependencies using Homebrew.

brew install cmake libomp

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

On Linux

First, install the dependencies using apt.

sudo apt install cmake

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

compnal-0.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (686.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

compnal-0.0.10-cp312-cp312-macosx_11_0_arm64.whl (826.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

compnal-0.0.10-cp312-cp312-macosx_10_9_x86_64.whl (893.9 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

compnal-0.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (689.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

compnal-0.0.10-cp311-cp311-macosx_11_0_arm64.whl (829.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

compnal-0.0.10-cp311-cp311-macosx_10_9_x86_64.whl (894.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

compnal-0.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (665.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

compnal-0.0.10-cp310-cp310-macosx_11_0_arm64.whl (804.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

compnal-0.0.10-cp310-cp310-macosx_10_9_x86_64.whl (869.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

compnal-0.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

compnal-0.0.10-cp39-cp39-macosx_11_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

compnal-0.0.10-cp39-cp39-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file compnal-0.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c2fc30c8b2e20095ca1f5c2c81b7cb174be4daef7249c2ccfd94bb99d573ff35
MD5 a01771b38b5aabd41c0c8c1b338d5225
BLAKE2b-256 002e6a507eab60ffea441651598d0f2cc3c14c4084cac4ba2915f138efe1ddc5

See more details on using hashes here.

File details

Details for the file compnal-0.0.10-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.10-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ad4ba789578988d4816fbb5283a5371b1491b7e3a3a35d50b5adeb1cb2572c2
MD5 ddf152c2a6ade9d62459e5b6fc70f061
BLAKE2b-256 b88828d8760c800bd49ab6d568448228425bf3dbd67c7deb2b34bf23c9f6f61f

See more details on using hashes here.

File details

Details for the file compnal-0.0.10-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.10-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7024a97e3c48a8d0979f08781ac6b48211763a8c89d11c77fc27f56d0dbe2487
MD5 41a79d5ff0999e7f16e73e9763a755b7
BLAKE2b-256 ae08044a78f53813e516b9ad104468ee178dfe19607c6fc09ced198237030005

See more details on using hashes here.

File details

Details for the file compnal-0.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e225524ef6fab4a1d76519afbf7bc17ec636cd414f2e5738f2f958f75768fc41
MD5 8ecbafa7dce9c591ffe08c13df77999f
BLAKE2b-256 22079f2cd4243fd817e0eeb0ea041cab4c1e0bef04871f4c55e41f2e8d36a174

See more details on using hashes here.

File details

Details for the file compnal-0.0.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 64f39d84a5351b83cbe44284ac6ab7b6ad5a9d60569c80fd04b85e566a801829
MD5 707e9192097dd906eb0cbbfe79af701b
BLAKE2b-256 6024fa58870b02dfa808702b138f3b33bcfd392716db2fddbe9c476a4cc4cd52

See more details on using hashes here.

File details

Details for the file compnal-0.0.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7c46955d761a3351a603266bb50b5d6c537db82083509b33fb0fb6938f95abf5
MD5 9e13cd7dd9a85e6b3e6ae98d50dba2a6
BLAKE2b-256 bb33fa70f7465a9ed942fde9a70f04922528e344b0300fe244a728ca4f483ecc

See more details on using hashes here.

File details

Details for the file compnal-0.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2da40477a2de88c8fb033ec7267d28c94b30a46adcd576c47a05d4eb6c72cc77
MD5 4057fd602c8b9fc7de93051ab314abe3
BLAKE2b-256 13149b5488dcef4ee2edda7e139d5fc75604739becad162b1522ccb3122497cf

See more details on using hashes here.

File details

Details for the file compnal-0.0.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d7570524870e68d2aa658c086ac79fe3e8c572eea6e8e927cc9cd9b7cb87d63
MD5 b8b4ee091a4a331e600bbbd68509f82b
BLAKE2b-256 7159a7b6fb1e7d6342df7d574edee45a393ee6c0e3616fe36b257eb70a2abc97

See more details on using hashes here.

File details

Details for the file compnal-0.0.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e336cffae2e81976b6300b05f796141bf9d6c58e2b39c24a4dda01e36550e4d9
MD5 4e5a41596b2b533050ce169ce18b6ef2
BLAKE2b-256 cd247a8d919e4b4c5c854bbe17fc6fcfab3731ef11c4bddff9a9d3435bd26128

See more details on using hashes here.

File details

Details for the file compnal-0.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32dedb54b87512d98acb9dbf74b9587bd7f435a35a751e21b316622474238551
MD5 12a7a543eccb0ab4395225060a025d9c
BLAKE2b-256 c27f6671bb637475306f204d9f89f5bb4bfc161c0bf346e929e11b279e36c9f1

See more details on using hashes here.

File details

Details for the file compnal-0.0.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1ed2cef84101ba5f8e1002453157ff264f537ba5f22930d22bb057d17d7ba710
MD5 67540589841a55dcc049fc74eb5db9c3
BLAKE2b-256 754706c1cdba8d22bcdde0783db8daa7dd87ce2dbdbdbb77058ed772ec1c9f67

See more details on using hashes here.

File details

Details for the file compnal-0.0.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1fbc771f78ace661ea6ebd09ecb638bd7de703110a16ff6a8a42d83941f59af5
MD5 1c8fb099af191920e6943864a74446e2
BLAKE2b-256 869ab7ca8ffb660d102bd46ed9e395d297b4dde1c07d9125e5071bf7324ebf93

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page