Skip to main content

Condensed Matter Physics Numerical Analytics Libirary

Project description

Python Test C++ Test codecov

Description

COndensed Matter Physics Numerical Analytics Library (COMPNAL) is a numerical calculation library in the field of condensed matter physics. This library aims to provide a comprehensive set of numerical methods and algorithms tailored for analyzing various condensed matter systems.

API Reference

C++ Reference

Features

COMPNAL can calculate the following models on the following lattices by the following solvers.

Lattice

  • One-dimensional chain
  • Two-dimensional square lattice
  • Three-dimensional cubic lattice
  • Fully-connected lattice

Model

Classical models

  • Ising model
  • Polynomial Ising model

Solver

For Classical models

  • Classical Monte Carlo method
    • Single spin flip
    • Parallel tempering

Upcoming Features

We are actively working on expanding COMPNAL with the following upcoming features.

Lattice

  • Two-dimensional triangular lattice
  • Two-dimensional honeycomb lattice
  • User-defined lattice

Model

  • Classical model

    • Potts model
  • Quantum model

    • Transverse field Ising model
    • Heisenberg model
    • Hubbard model
    • Kondo Lattice model

Algorithm

  • Classical Monte Carlo method
    • Suwa-Todo algorithm
    • Wolff algorithm
    • Swendsen-Wang algorithm
  • Exact Diagonalization
    • Lanczos method
    • Locally Optimal Block Preconditioned Conjugate Gradient method
  • Density Matrix Renormalization Group

Installation

Install from PyPI

Only for Linux and MacOS.

pip install compnal

Install from GitHub

To install the latest release of compnal from the source, use the following command:

pip install git+https://github.com/K-Suzuki-Jij/compnal.git

Before installation, make sure that the following dependencies are installed.

Build from source

COMPNAL depends on the following libraries.

On MacOS

First, install the dependencies using Homebrew.

brew install cmake libomp

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

On Linux

First, install the dependencies using apt.

sudo apt install cmake

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

compnal-0.0.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (686.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

compnal-0.0.14-cp312-cp312-macosx_14_0_x86_64.whl (968.1 kB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

compnal-0.0.14-cp312-cp312-macosx_14_0_arm64.whl (824.0 kB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

compnal-0.0.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (689.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

compnal-0.0.14-cp311-cp311-macosx_14_0_x86_64.whl (968.6 kB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

compnal-0.0.14-cp311-cp311-macosx_14_0_arm64.whl (827.2 kB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

compnal-0.0.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

compnal-0.0.14-cp310-cp310-macosx_14_0_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

compnal-0.0.14-cp310-cp310-macosx_14_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

File details

Details for the file compnal-0.0.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c0a4ef790f0e2815a6d6edcc8627ec630faa5bbeee6dd0e05936261463cab7d
MD5 ae195642b431feea14e55097752913ee
BLAKE2b-256 403e9c221c830c6b2ea2cd395e751de1c9c3187752a7a0b0984beafa17af84f9

See more details on using hashes here.

File details

Details for the file compnal-0.0.14-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.14-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 f42189f17d38cee12bc21a3941f0534e012ed21740014c8f9dd6f47d2d2d1a26
MD5 c2ee35c2b43cf6f4c8cb2772d2ac8858
BLAKE2b-256 a34c91c0e641dd4cf3578ec7de19a41b04ee25c5404e335339c9976f68ec6e80

See more details on using hashes here.

File details

Details for the file compnal-0.0.14-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.14-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 cb7695161497b2419f6b242f70b5bb20a97d4aa408a958888c1ec839bd8f5575
MD5 7052320bdc55808c8a29594ca7fa1bf5
BLAKE2b-256 bc678145e31dfe7fa08a4ce169e66f5bfbc7f9e768d099d03fd104d50d516d7d

See more details on using hashes here.

File details

Details for the file compnal-0.0.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab3ce479485e21695830124b207f7e5481f8376a608917b82762cc3d2e7119f1
MD5 493893a80400ad9a9cf7965e0aa702bf
BLAKE2b-256 2446438a9a7645bf396e1757c847b4415a14321ab34891728ba4f4ccd7501cf0

See more details on using hashes here.

File details

Details for the file compnal-0.0.14-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.14-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 7ce810a32b9f1c1a6482906f7312641a9795fa84be9cf5527cd23cbb523c2b5c
MD5 a43d6ec3c27ff5b22d59a687665c2452
BLAKE2b-256 e71581476db9cb7a70e2fc712bc7c454d0a497cbca738407669cd261e0a562c8

See more details on using hashes here.

File details

Details for the file compnal-0.0.14-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.14-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 c529b16a47acbaed819bcb6f58aaf7dcae320a05e5e0b1eb5fe75c41fb88974a
MD5 5fb3f17b0f27ed95194e3e99e3a4b281
BLAKE2b-256 08977e788cbb58664aead7199675b7e530164b3eae137272fade27a66f3880fd

See more details on using hashes here.

File details

Details for the file compnal-0.0.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49a46ac7e3ca9d264c68f1ff911356e9cb494fbaf360fae1f6f39fc15fd4ca80
MD5 5d0aabf075199c11d0df117297518cc7
BLAKE2b-256 cb5f541f80c1197edbe961db13686c558b3dd298f5ec52bd5e299ba3df074098

See more details on using hashes here.

File details

Details for the file compnal-0.0.14-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.14-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 d229a891a4bf21508d0f22186e483cd4b6b6c7cf514d1e2468d154e31367229b
MD5 5e4759899e0a8a5b6646a31c4e7285db
BLAKE2b-256 4ca0a39ce0f5e74f1005b753038f1c68e35a8ff7d9992ee6ded5dae38c9fafdf

See more details on using hashes here.

File details

Details for the file compnal-0.0.14-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.14-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 c643946654f3bd5877640ccb527e4d3c8af260fecd3a609b0ebafd1e1c0196d1
MD5 cf9c3ebe1e7831093bd22f2a40d66d50
BLAKE2b-256 b0188e6c81bc92c8bd194aa2cad6956eed17195b26e576a6eb94531def46bd3b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page