Skip to main content

Condensed Matter Physics Numerical Analytics Libirary

Project description

Python Test C++ Test codecov

Description

COndensed Matter Physics Numerical Analytics Library (COMPNAL) is a numerical calculation library in the field of condensed matter physics. This library aims to provide a comprehensive set of numerical methods and algorithms tailored for analyzing various condensed matter systems.

API Reference

C++ Reference

Features

COMPNAL can calculate the following models on the following lattices by the following solvers.

Lattice

  • One-dimensional chain
  • Two-dimensional square lattice
  • Three-dimensional cubic lattice
  • Fully-connected lattice

Model

Classical models

  • Ising model
  • Polynomial Ising model

Solver

For Classical models

  • Classical Monte Carlo method
    • Single spin flip
    • Parallel tempering

Upcoming Features

We are actively working on expanding COMPNAL with the following upcoming features.

Lattice

  • Two-dimensional triangular lattice
  • Two-dimensional honeycomb lattice
  • User-defined lattice

Model

  • Classical model

    • Potts model
  • Quantum model

    • Transverse field Ising model
    • Heisenberg model
    • Hubbard model
    • Kondo Lattice model

Algorithm

  • Classical Monte Carlo method
    • Suwa-Todo algorithm
    • Wolff algorithm
    • Swendsen-Wang algorithm
  • Exact Diagonalization
    • Lanczos method
    • Locally Optimal Block Preconditioned Conjugate Gradient method
  • Density Matrix Renormalization Group

Installation

Install from PyPI

Only for Linux and MacOS on x86_64.

pip install compnal

For MacOS on Apple Silicon, please follow the instructions below.

Install from GitHub

To install the latest release of compnal from the source, use the following command:

pip install git+https://github.com/K-Suzuki-Jij/compnal.git

Before installation, make sure that the following dependencies are installed.

Build from source

COMPNAL depends on the following libraries.

On MacOS

First, install the dependencies using Homebrew.

brew install cmake libomp

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

On Linux

First, install the dependencies using apt.

sudo apt install cmake

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

compnal-0.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (666.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

compnal-0.0.5-cp312-cp312-macosx_10_9_x86_64.whl (877.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

compnal-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (671.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

compnal-0.0.5-cp311-cp311-macosx_10_9_x86_64.whl (877.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

compnal-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (647.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

compnal-0.0.5-cp310-cp310-macosx_10_9_x86_64.whl (852.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

compnal-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

compnal-0.0.5-cp39-cp39-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file compnal-0.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d514bb7460773f0871d00ca312d34b76cf9174b61ba745366cebe3914d537e32
MD5 66f37b8c6cd4f6f29f0d60d2a4ff475a
BLAKE2b-256 88f8452096085deddfdd514af062b3eefc97c3bbc914d02e1137a1caa87d55b0

See more details on using hashes here.

File details

Details for the file compnal-0.0.5-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.5-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1a0837d113cf5bb5d45a6419ec484c8a617cefec17760e7f6ef19203452984e
MD5 734f0d9186584ce6f6ced3bd42ef269c
BLAKE2b-256 7354889719cbc9e65d4eaf1d24fa12ba24fa6af039d3822d98dc94c976dfb7a1

See more details on using hashes here.

File details

Details for the file compnal-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67b649fe288526b7a7d224a8f101d5a4644f6767e9860b23ef96cf678bbdf13d
MD5 bc107d78f9727d29b34aa0475150388c
BLAKE2b-256 6880f51d84ac633d7ac04006e349de20e91643ef52cefcc18b927af783ec91e3

See more details on using hashes here.

File details

Details for the file compnal-0.0.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36c4f468f064c36e10b2d77192b044587d705441443a06cde663a8ac7616ffc3
MD5 759a73d3261260dc26a09d5e9dd9b807
BLAKE2b-256 8450199eaf6e3b15a25c495b61f6beeed0ae3c793b4b79fcad2b62c2eb3caeb7

See more details on using hashes here.

File details

Details for the file compnal-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 149b0742231c815e010a435615167a0d280bd139f2abf57141a8b5bdea148387
MD5 51afe6b78b0552dd91023e1e65cc6ec9
BLAKE2b-256 c3a962a5cdac4a4843c20916d49013204883c21fef85d1c30796a445ede869c3

See more details on using hashes here.

File details

Details for the file compnal-0.0.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6293cffda47f8a90c282ab8e5b87e4e4941798244246763c4e151a91173e2052
MD5 9da842fd52127ede706ce3da289b6925
BLAKE2b-256 c788c3664fd10f003cb0b4c7ee8f26d90bde6c85c5c22aa835b626a6c32bcb74

See more details on using hashes here.

File details

Details for the file compnal-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3e96f1ee41304236c2e07d7e10acb738bd5c5f951c396e416ba261e5f5cad20
MD5 30bc5334cc49513303b4ed05f03807d0
BLAKE2b-256 b15531b61657f9cce7b129686ed3ec7558c231edd9bdff12a724fad25422a1dc

See more details on using hashes here.

File details

Details for the file compnal-0.0.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b8ee083eed94f8fed23de20959e9554ca0acf537b2fd9a1849b4e5b830d77366
MD5 01301d4fda521b388303283f4b5caaa1
BLAKE2b-256 132db968edb9dc38af0f4e31e2a0ea9ac2c11b59949741165d8ef1d76673e80b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page