Skip to main content

Condensed Matter Physics Numerical Analytics Libirary

Project description

Python Test C++ Test codecov

Description

COndensed Matter Physics Numerical Analytics Library (COMPNAL) is a numerical calculation library in the field of condensed matter physics. This library aims to provide a comprehensive set of numerical methods and algorithms tailored for analyzing various condensed matter systems.

API Reference

C++ Reference

Features

COMPNAL can calculate the following models on the following lattices by the following solvers.

Lattice

  • One-dimensional chain
  • Two-dimensional square lattice
  • Three-dimensional cubic lattice
  • Fully-connected lattice

Model

Classical models

  • Ising model
  • Polynomial Ising model

Solver

For Classical models

  • Classical Monte Carlo method
    • Single spin flip
    • Parallel tempering

Upcoming Features

We are actively working on expanding COMPNAL with the following upcoming features.

Lattice

  • Two-dimensional triangular lattice
  • Two-dimensional honeycomb lattice
  • User-defined lattice

Model

  • Classical model

    • Potts model
  • Quantum model

    • Transverse field Ising model
    • Heisenberg model
    • Hubbard model
    • Kondo Lattice model

Algorithm

  • Classical Monte Carlo method
    • Suwa-Todo algorithm
    • Wolff algorithm
    • Swendsen-Wang algorithm
  • Exact Diagonalization
    • Lanczos method
    • Locally Optimal Block Preconditioned Conjugate Gradient method
  • Density Matrix Renormalization Group

Installation

Install from PyPI

Only for Linux and MacOS on x86_64.

pip install compnal

For MacOS on Apple Silicon, please follow the instructions below.

Install from GitHub

To install the latest release of compnal from the source, use the following command:

pip install git+https://github.com/K-Suzuki-Jij/compnal.git

Before installation, make sure that the following dependencies are installed.

Build from source

COMPNAL depends on the following libraries.

On MacOS

First, install the dependencies using Homebrew.

brew install cmake libomp

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

On Linux

First, install the dependencies using apt.

sudo apt install cmake

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

compnal-0.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (680.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

compnal-0.0.6-cp312-cp312-macosx_10_9_x86_64.whl (880.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

compnal-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (684.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

compnal-0.0.6-cp311-cp311-macosx_10_9_x86_64.whl (880.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

compnal-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (659.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

compnal-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl (855.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

compnal-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

compnal-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file compnal-0.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d54a783ce5b4a70fe919caecc84c5e137863b1b793d0798e26df1f347aec18a0
MD5 6c209e59ef362b659d956f7a9f63732d
BLAKE2b-256 3734916b6e71a42f81a2d9e7df4502eb5e06db1b76845dc93fb092dc19b8c2d9

See more details on using hashes here.

File details

Details for the file compnal-0.0.6-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.6-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d187c58473be29fe9cbee21b6dd851479fed1482ce00e3cdcacc68f0a6c3ebe
MD5 dd530bf7fdb89cd1155cd21218bab795
BLAKE2b-256 0817d81df821d6dfbbc3886060b1fa7d040390c1df2cbf5a684917ecb6cadd14

See more details on using hashes here.

File details

Details for the file compnal-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 667df08646e36e42f40f0bca11b4b9d28f3071743844f2da702b8e317535a43a
MD5 a46a72ab8bd074013f1ac65bad44bcaa
BLAKE2b-256 90b7329e60324583e8a8e1ed6805ab5a44d0591dfea38f3aab784b7c7aaf121e

See more details on using hashes here.

File details

Details for the file compnal-0.0.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a1264244f3ec4c0b1ee90263b876e06e2355e8f64323ffe32a2f8bcbc05a0c3e
MD5 174b42d24d965011fc8d623ebdbff61c
BLAKE2b-256 8554108f415283cba73c47f580bde2b70ed25dfa342660cadde29cc9b2f6dd3a

See more details on using hashes here.

File details

Details for the file compnal-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d4dda633c2f2151bc83b7985dd6a8d01501ff8200fefe6981a8b4b50e1e4f4b
MD5 ae6b20f489b8b067b02279bab87210e6
BLAKE2b-256 032f15077b9b14618f296a1edd65e1d6f1e6ed6c0049fa4d0ef79dced8322cf5

See more details on using hashes here.

File details

Details for the file compnal-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d1ab73721393c0c0c1e29806c107a60e0ec2387debf195229ebc4066e9b71bd
MD5 3d58d08877d42b1566a02841ce37868e
BLAKE2b-256 b07a8b7d8d67be79cb319e8b307e10305418d8d75ac60eb54e40bd4bbed7ce55

See more details on using hashes here.

File details

Details for the file compnal-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b87769243bfc8fdb9b3a59222c795d7e7880e56d7be9c27f97460c8033f303a
MD5 3a128fb7ed056247708bee900bdf1122
BLAKE2b-256 93bd66b9e23ee0b401ed488894b98f632e24ed3696e26052cd47d40160ff5faa

See more details on using hashes here.

File details

Details for the file compnal-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 783cc42a0d6804e32de26e101095b72d2be54b1e6bc31f04aa4467b2d403900e
MD5 adf509e580a5a87392f59d44b68bd45b
BLAKE2b-256 99cf97eeb07f22732bb8bafc80481317390f05dd4595f53c3bd2936d60052d1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page