Skip to main content

Condensed Matter Physics Numerical Analytics Libirary

Project description

Python Test C++ Test codecov

Description

COndensed Matter Physics Numerical Analytics Library (COMPNAL) is a numerical calculation library in the field of condensed matter physics. This library aims to provide a comprehensive set of numerical methods and algorithms tailored for analyzing various condensed matter systems.

API Reference

C++ Reference

Features

COMPNAL can calculate the following models on the following lattices by the following solvers.

Lattice

  • One-dimensional chain
  • Two-dimensional square lattice
  • Three-dimensional cubic lattice
  • Fully-connected lattice

Model

Classical models

  • Ising model
  • Polynomial Ising model

Solver

For Classical models

  • Classical Monte Carlo method
    • Single spin flip
    • Parallel tempering

Upcoming Features

We are actively working on expanding COMPNAL with the following upcoming features.

Lattice

  • Two-dimensional triangular lattice
  • Two-dimensional honeycomb lattice
  • User-defined lattice

Model

  • Classical model

    • Potts model
  • Quantum model

    • Transverse field Ising model
    • Heisenberg model
    • Hubbard model
    • Kondo Lattice model

Algorithm

  • Classical Monte Carlo method
    • Suwa-Todo algorithm
    • Wolff algorithm
    • Swendsen-Wang algorithm
  • Exact Diagonalization
    • Lanczos method
    • Locally Optimal Block Preconditioned Conjugate Gradient method
  • Density Matrix Renormalization Group

Installation

Install from PyPI

Only for Linux and MacOS on x86_64.

pip install compnal

For MacOS on Apple Silicon, please follow the instructions below.

Install from GitHub

To install the latest release of compnal from the source, use the following command:

pip install git+https://github.com/K-Suzuki-Jij/compnal.git

Before installation, make sure that the following dependencies are installed.

Build from source

COMPNAL depends on the following libraries.

On MacOS

First, install the dependencies using Homebrew.

brew install cmake libomp

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

On Linux

First, install the dependencies using apt.

sudo apt install cmake

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

compnal-0.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (680.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

compnal-0.0.7-cp312-cp312-macosx_11_0_arm64.whl (750.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

compnal-0.0.7-cp312-cp312-macosx_10_9_x86_64.whl (880.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

compnal-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (684.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

compnal-0.0.7-cp311-cp311-macosx_11_0_arm64.whl (753.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

compnal-0.0.7-cp311-cp311-macosx_10_9_x86_64.whl (880.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

compnal-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (659.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

compnal-0.0.7-cp310-cp310-macosx_11_0_arm64.whl (729.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

compnal-0.0.7-cp310-cp310-macosx_10_9_x86_64.whl (855.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

compnal-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

compnal-0.0.7-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

compnal-0.0.7-cp39-cp39-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file compnal-0.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 989902aa3aed5bf7fe5bd3354f1c586e31cb55017942f2d5804d82a836e01861
MD5 9d5eec2d4f34a7336e7a349601611f2b
BLAKE2b-256 adf24e814c48f66fafaeffea795c401877c32383eb1054668bc2f359c12d3f48

See more details on using hashes here.

File details

Details for the file compnal-0.0.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1cdc92c990dbe7f4898ae40672470516edc67e04e0db90641c8aaa003aa97ed9
MD5 69216f07a021f8941737a3639c051fa6
BLAKE2b-256 144871b69564182f829421adf7f3bd8eeae4a14701dc5bc9c60d67c24f61c6ba

See more details on using hashes here.

File details

Details for the file compnal-0.0.7-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.7-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ecae72d5120c723565c7db5f55ed6edf6be36ab4aa120c29a35c0684d18d9f0c
MD5 ca8c372f38bb438e22de07fbc2e5a712
BLAKE2b-256 caf18f69bfcc650041d02af163b4ee9a1eca93c44ba934480231f970386257d7

See more details on using hashes here.

File details

Details for the file compnal-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19cc6a73169379b4be3b4e137b8367febce409251d0c0e95d0c3a2f9c387a1ca
MD5 0be343e7359bd70105d5ec9f789e85a0
BLAKE2b-256 9ab19e537058a63f089667a50b20506f2057c79ef8dc770799f8127af7cd2a71

See more details on using hashes here.

File details

Details for the file compnal-0.0.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d597eeff9b429aa23306be1dfbdc024ad786f9ba8e3d5484e5953ceb78128e7a
MD5 e83331f70092568265ad76fd3b01c97b
BLAKE2b-256 5075800cc0315333ec7b9838d4f20db0130d63db11c7bf4c70ceb91b99787826

See more details on using hashes here.

File details

Details for the file compnal-0.0.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22e0ba87e1f3185113bebe7c2c75c0b81e477e8c3e001bb84a9599e1806f77f4
MD5 0f1738e3ac9b5fa42156ce87ea0dda0d
BLAKE2b-256 1cd68c150177f49209a6b63692586951215dbca661daefba6238227fb588e27a

See more details on using hashes here.

File details

Details for the file compnal-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32aac3fa7f4eede60691fcb34a18c5c8937730cde2f2f1ca927d2875653ce462
MD5 0204d385a70e963b4e3ba45f0c0e0f1f
BLAKE2b-256 eaca3587a03a2b9fdd2add8a42a90be803e1e59ad9ae736a3a6a346f760d6890

See more details on using hashes here.

File details

Details for the file compnal-0.0.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bc946a33c78d6458a89d2e30290af45db55a45a262d12616dd528be151ac8acb
MD5 4d7940c44063e363f7a66514ff83210e
BLAKE2b-256 187f7d9090eaa3931acbc76e62e269ac0ce6f82e14a14c60f1d5e5d6e64ca079

See more details on using hashes here.

File details

Details for the file compnal-0.0.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a16f78d45ed20931bc7880ebd578b5f1068639016ffafea8053c0a6ae851ee50
MD5 a598b13651baab42d914ef992cd548ee
BLAKE2b-256 a1f57f6338a402d64da32e0be1c42889b27a33e68baf75350aba0f615a20f845

See more details on using hashes here.

File details

Details for the file compnal-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 017d107d096059396aafb343686903908c8ada99c2a2371aeb56c4004783512f
MD5 3e0ce275fa85ef27d1e1df5cb30afd8d
BLAKE2b-256 f3a95ee3b5f5abfbc224df97c691a356b70842cca2c9114b99d47d0d9dc7f152

See more details on using hashes here.

File details

Details for the file compnal-0.0.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a8199ea91b049e2a10197829d4e760d1acfa67be466f202b677160ad7236ebb0
MD5 c816130fdbdccfcf9bdcfba1738a6012
BLAKE2b-256 d4d72134975c520f32da2e3ea8150c475031bcd63cbdd9d9ed034c42e4d6334d

See more details on using hashes here.

File details

Details for the file compnal-0.0.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3207380dfc4cfda23c198097bead42d2430a9afcb3d8309cb8453442bb685c1e
MD5 0e563edbc95bc0a58c34001b81cfbe72
BLAKE2b-256 921b3ec31c09990cd3bb7cea7bdd9c2126951dcb9ac22885a0ae7727e5de4202

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page