Skip to main content

Condensed Matter Physics Numerical Analytics Libirary

Project description

Python Test C++ Test codecov

Description

COndensed Matter Physics Numerical Analytics Library (COMPNAL) is a numerical calculation library in the field of condensed matter physics. This library aims to provide a comprehensive set of numerical methods and algorithms tailored for analyzing various condensed matter systems.

API Reference

C++ Reference

Features

COMPNAL can calculate the following models on the following lattices by the following solvers.

Lattice

  • One-dimensional chain
  • Two-dimensional square lattice
  • Three-dimensional cubic lattice
  • Fully-connected lattice

Model

Classical models

  • Ising model
  • Polynomial Ising model

Solver

For Classical models

  • Classical Monte Carlo method
    • Single spin flip
    • Parallel tempering

Upcoming Features

We are actively working on expanding COMPNAL with the following upcoming features.

Lattice

  • Two-dimensional triangular lattice
  • Two-dimensional honeycomb lattice
  • User-defined lattice

Model

  • Classical model

    • Potts model
  • Quantum model

    • Transverse field Ising model
    • Heisenberg model
    • Hubbard model
    • Kondo Lattice model

Algorithm

  • Classical Monte Carlo method
    • Suwa-Todo algorithm
    • Wolff algorithm
    • Swendsen-Wang algorithm
  • Exact Diagonalization
    • Lanczos method
    • Locally Optimal Block Preconditioned Conjugate Gradient method
  • Density Matrix Renormalization Group

Installation

Install from PyPI

Only for Linux and MacOS.

pip install compnal

Install from GitHub

To install the latest release of compnal from the source, use the following command:

pip install git+https://github.com/K-Suzuki-Jij/compnal.git

Before installation, make sure that the following dependencies are installed.

Build from source

COMPNAL depends on the following libraries.

On MacOS

First, install the dependencies using Homebrew.

brew install cmake libomp

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

On Linux

First, install the dependencies using apt.

sudo apt install cmake

Then, clone this repository and install COMPNAL.

python -m pip install . -vvv

Run the test to check if the installation is successful.

python -m pytest tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

compnal-0.0.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (730.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

compnal-0.0.8-cp312-cp312-macosx_11_0_arm64.whl (794.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

compnal-0.0.8-cp312-cp312-macosx_10_9_x86_64.whl (925.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

compnal-0.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (734.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

compnal-0.0.8-cp311-cp311-macosx_11_0_arm64.whl (798.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

compnal-0.0.8-cp311-cp311-macosx_10_9_x86_64.whl (926.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

compnal-0.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (712.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

compnal-0.0.8-cp310-cp310-macosx_11_0_arm64.whl (773.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

compnal-0.0.8-cp310-cp310-macosx_10_9_x86_64.whl (901.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

compnal-0.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

compnal-0.0.8-cp39-cp39-macosx_11_0_arm64.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

compnal-0.0.8-cp39-cp39-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file compnal-0.0.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b143f0da15290e366eae6ba426b5dada3def72c85810305a104f0ad78b1d0da3
MD5 10e33f93793180808b3daa07444dd89f
BLAKE2b-256 96d3062e966a44fb0a2729b357ce986e5da6f5cd0c47dd2a769d232dd8976c7a

See more details on using hashes here.

File details

Details for the file compnal-0.0.8-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.8-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 291d74d5f9cd85d530342e46281f469fbccc99634ebfd9a81d2778171cc56010
MD5 360a3e92deccd5782b62e6dc375ba460
BLAKE2b-256 c374de8d4eab6a4d081801804ec60a045bb86acb816a62316f25477959edcad6

See more details on using hashes here.

File details

Details for the file compnal-0.0.8-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.8-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 637ef31ee2a8129aaf9903f07f3085f4e3a7f08f28f46cd741976330c1db65a7
MD5 e836f3ea95a68698984e248f75e8c7c6
BLAKE2b-256 937035209160145a2888e58263128bf02824c1b4d409a1d6df85ef774542665f

See more details on using hashes here.

File details

Details for the file compnal-0.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bfbf4bddc50fe2a2c8bd8df1ae318211c55f85b3e053bdc8f0656b966beb469
MD5 765d2d5f1cd98f586587edc9585288e5
BLAKE2b-256 5869f7174ae2e2bc3467d762d5c83f8871e002015f4a200641e0dd337ecd5ec6

See more details on using hashes here.

File details

Details for the file compnal-0.0.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 14e0fcc3c09e89ee7d70545d1e52fce5b96ec51bc050c909dc804854fd7ffb88
MD5 9c57c906370588c91cb683946fec8154
BLAKE2b-256 5fa0bc331d20f6079388ac71bac5435a3c9400846ff4434a204b3d837bee03ce

See more details on using hashes here.

File details

Details for the file compnal-0.0.8-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.8-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 77248c83300b7a04998c7b73f8d09483bbd9be053fc939f5e691aa0053ff81d0
MD5 0556b5af529773cb7e2e52b3382ca8cc
BLAKE2b-256 fdec6d0c1af540d2843535b3ae4d1236b1514e6f08395ba23e55ec0ad61d57ed

See more details on using hashes here.

File details

Details for the file compnal-0.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3c8d826027ad54d25a3f82602cf73c0404ba1b09d08e086c39fc502616f3a50
MD5 94d885c4749dd9244aa7c62215145a97
BLAKE2b-256 c59892e7132d9482466ba5ca9ac7ccc86f5d277e75afa847e2673f8b1147e879

See more details on using hashes here.

File details

Details for the file compnal-0.0.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1ec7f39cd86a6897b38ea5a874911d9168e5b5786216639261afc4800124be77
MD5 77b6816d4476712acdc44a9de8b9af87
BLAKE2b-256 f32b72c37d6f6ba96bbfc85765752d08160aeee13cd9c1ddb470dac6ee151b09

See more details on using hashes here.

File details

Details for the file compnal-0.0.8-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.8-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 616af40ebf81a472044a42650cce9721d4f7d13066b41488e45327aed0613ca6
MD5 0890c99b621243b455ea9caa55d4225f
BLAKE2b-256 460e528c61cc0efdd59e53b75e45751c1d7f2d65e6b2330530ae98ea95193fa7

See more details on using hashes here.

File details

Details for the file compnal-0.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c820f0708b3201681f024d0819bcbfecf82c61673f9b70216971518a83c0b47d
MD5 ff48eda8b8fd2e1f5584e0af35d5c470
BLAKE2b-256 5598a1499c3faeb1e60d84120333d91ea99c57d3818455a0cb8309c315dcc04a

See more details on using hashes here.

File details

Details for the file compnal-0.0.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for compnal-0.0.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a1f8feca2437fafdf69f9f7fbb1d5a5bb53982ce6597c80733ca906de7cd4832
MD5 2f32e33950996bc5e356a5dac6c1c21a
BLAKE2b-256 30ddfa5d700a17d27186028a714bdb1138decd5359ebdd2678e4f35697555db7

See more details on using hashes here.

File details

Details for the file compnal-0.0.8-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for compnal-0.0.8-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 18b1a78914626f45ece173838bc47d6b5e547ee2d45724c644db2da6212b873e
MD5 ad49281ba46a338f6bbd92b1367ca67b
BLAKE2b-256 11b37b0bcd2fbcc7f2b71c7c4ca79ec274fdfc9aabcf44b735bca3825f7f77d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page